Trong các khẳng định sau, khẳng định nào sai?
A. Một dãy số là một hàm số.
B. Dãy số \({u_n} = {\left( { - \frac{1}{2}} \right)^{n - 1}}\) là dãy số không tăng cũng không giảm dưới.
C. Mỗi dãy số tăng là một dãy số bị chặn
D. Một hàm số là một dãy số.
Lời giải của giáo viên
ToanVN.com
Chọn A. Định nghĩa dãy số: Dãy số là một hàm số xác định trên tập hợp số nguyên dương ⇒ A đúng.
Chọn B. Dãy số \({u_n} = {\left( { - \frac{1}{2}} \right)^{n - 1}}\) có \({u_1} = 1;{u_2} = - \frac{1}{2};{u_3} = \frac{1}{4};{u_4} = - \frac{1}{8}...\) nên dãy này không tăng cũng không giảm ⇒ B đúng.
Chọn C. Mỗi dãy số tăng đều bị chặn dưới bởi u1 vì \({u_1} < {u_2} < {u_3} < ... \Rightarrow C\) đúng.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(\left( {{u_n}} \right):2,a,6,b.\) Tích ab bằng bao nhiêu?
Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức \(P = \frac{{\sqrt {{a^2} + 8bc} + 3}}{{\sqrt {{{\left( {2a + c} \right)}^2} + 1} }}\) có dạng \(x\sqrt y \left( {x,y \in N} \right).\) Hỏi x + y bằng bao nhiêu?
Cho \(a + b + c = \frac{\pi }{2}\) và cota, cotb, cotc tạo thành cấp số cộng. Giá trị cota.cotc bằng
Cho cấp số nhân (un) có u1 = 2 và công bội q = 3. Tính u3
Cho cấp số cộng (un) có \({u_1} = - 2\) và công sai d = 3. Tìm số hạng u10.
Cho các số \(x + 2,{\rm{ x}} + 14,{\rm{ x}} + 50\) theo thứ tự lập thành một cấp số nhân. Khi đó x3 + 2003 bằng
Xác định Số hạng đầu u1 và công sai d của cấp số cộng (un) có \({u_9} = 5{u_2}\) và \({u_{13}} = 2{u_6} + 5.\)
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức \({S_n} = 4n - {n^2}\). Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó:
Chu vi của một đa giác là 158 cm, số đo các cạnh của nó lập thành một cấp số cộng với công sai d = 3cm. Biết cạnh lớn nhất là 44cm. Số cạnh của đa giác đó là
Cho một cấp số cộng có \({u_4} = 2,{u_2} = 4\).Hỏi u1 bằng bao nhiêu?
Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết \(\tan \frac{A}{2}\tan \frac{C}{2} = \frac{x}{y}\left( {x,y \in N} \right)\), giá trị x + y là
Cho một cấp số cộng (un) có \({u_1} = \frac{1}{3};{u_8} = 26.\) Tìm công sai d.
Cho cấp số nhân có \({u_2} = \frac{1}{4},{u_5} = 16.\) Tìm q và u1 của cấp số nhân.
Cho tam giác ABC có các góc A, B, C tạo thành một cấp số nhân công bội 2. Khẳng định nào sau đây đúng?
