Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và đáy ABC là tam giác cân ở A. Gọi H là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây đúng?
A. \(H \in SB\)
B. H trùng với trọng tâm tam giác SBC.
C. \(H \in SC\)
D. \(H \in SI\) (I là trung điểm của BC)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi I là trung điểm của \(BC \Rightarrow AI \bot BC\) mà \(BC \bot SA\)
\( \Rightarrow BC \bot \left( {SAI} \right)\)
Khi đó H là hình chiếu vuông góc của A lên (SBC). Suy ra \(H \in SI\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(\left(u_{n}\right) \text { với }\left\{\begin{array}{l} u_{1}=2 \\ u_{n+1}=2 u_{n} \end{array}\right.\). Công thức số hạng tổng quát của dãy số này :
Cho dãy số \(\left(u_{n}\right) \text { với }\left\{\begin{array}{l} u_{1}=\frac{1}{2} \\ u_{n+1}=u_{n}-2 \end{array}\right.\).Công thức số hạng tổng quát của dãy số này là:
Cho dãy số \(\left(u_{n}\right) \text { vớii }\left\{\begin{array}{l} u_{1}=\frac{1}{2} \\ u_{n+1}=2 u_{n} \end{array}\right.\). Công thức số hạng tổng quát của dãy số này:
Cho dãy số \(\left(u_{n}\right) \text { với }\left\{\begin{array}{l} u_{1}=-1 \\ u_{n+1}=\frac{u_{n}}{2} \end{array}\right.\). Công thức số hạng tổng quát của dãy số này là:
Cho cấp số cộng \(\left(u_{n}\right) \operatorname{có} u_{4}=-12 ; u_{14}=18\). Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Trong các dãy số dưới đây, dãy số nào là cấp số nhân?
Giá trị của \(D = \lim \left( {\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}}} \right)\) bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có \( AB = a\sqrt 2 \). Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Cho f(x) = sinx và \(\mathop {\lim }\limits_{x \to {\rm{\pi }}} \frac{{\sin \;x}}{{x - {\rm{\pi }}}} = - 1\). Khẳng định nào dưới đây là đúng?
Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là 125cm3 và diện tích toàn phần là 175cm2. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.
Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {4x + 5} - 3}}{{\sqrt[3]{{5x + 3}} - 2}}\)
Cho hình chóp (S.ABCD ) có đáy ABCD là hình vuông, \(\frac{{SB}}{{\sqrt 2 }} = \frac{{SC}}{{\sqrt 3 }} = a\). Cạnh SA vuông góc (ABCD), khoảng cách từ điểm A đến mặt phẳng (SCD) bằng:
Tính giới hạn của dãy số \({u_n} = \frac{1}{{2\sqrt 1 + \sqrt 2 }} + \frac{1}{{3\sqrt 2 + 2\sqrt 3 }} + .... + \frac{1}{{\left( {n + 1} \right)\sqrt n + n\sqrt {n + 1} }}\)
Kết quả của giới hạn \(\lim \frac{2^{n+1}+3 n+10}{3 n^{2}-n+2}\) là?
Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{{\left( {x - 1} \right)}^2}\left( {2{x^3} + 3x} \right)}}{{4x - {x^5}}} = \frac{a}{b}\) (phân số tối giản). Giá trị của A = a2−b2 là
