Cho dãy số (un) xác định bởi \({u_1} = - \frac{{41}}{{20}}\) và \({u_{n + 1}} = 21{u_n} + 1\) với mọi \(n \ge 1.\) Tìm số hạng thứ 2018 của dãy số đã cho.
A. \({u_{2018}} = {2.21^{2018}} - \frac{1}{{20}}.\)
B. \({u_{2018}} = {2.21^{2017}} - \frac{1}{{20}}.\)
C. \({u_{2018}} = - {2.21^{2017}} - \frac{1}{{20}}.\)
D. \({u_{2018}} = - {2.21^{2018}} - \frac{1}{{20}}.\)
Lời giải của giáo viên
ToanVN.com
Ta có \({u_{n + 1}} = 21{u_n} + 1 \Leftrightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} \right) \Leftrightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} \right)\).
Đặt \({v_n} = {u_n} + \frac{1}{{20}}\), ta có \({v_{n + 1}} = 21{v_n}\).
Do đó (vn) là một CSN với \({v_1} = - \frac{{41}}{{20}} + \frac{1}{{20}} = - 2\) và công bội q = 21.
Do đó số hạng tổng quát của dãy (vn) là
\({v_n} = {v_1}.{q^{n - 1}} = - {2.21^{n - 1}} \Rightarrow {u_n} = - {2.21^{n - 1}} - \frac{1}{{20}}\)
\( \Rightarrow {u_n} = - {2.21^{n - 1}} - \frac{1}{{20}}\)
Khi đó \({u_{2018}} = - {2.21^{2017}} - \frac{1}{{20}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \)?
Giá trị của \(\lim \frac{\cos n+\sin n}{n^{2}+1}\) bằng:
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Khẳng định nào sau đây sai?
Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Góc giữa AC và \(D{A_1}\) là
Cho ba vectơ\(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Tìm giới hạn \(C=\lim\limits _{x \rightarrow+\infty}\left(\sqrt{4 x^{2}+x+1}-2 x\right)\)
Cho \(\overrightarrow a = 3{,^{}}\overrightarrow b = 5\) góc giữa \(\vec a\) và \(\vec b\) bằng 120o. Chọn khẳng định sai trong các khẳng định sau?
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Trong không gian tập hợp các điểm M cách đều hai điểm cố định C và D là?
\(\text { Tính giới hạn } L=\lim \frac{\sqrt[3]{n}+1}{\sqrt[3]{n+8}} \text { . }\)
Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với (n = k ) thì ta cần chứng minh mệnh đề đúng đến:
