Với giá trị nào của \(m\) thì hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 2x - 3}}{{x - 3}},\,\,x \ne 3\\4x - 2m\,\,\,\,\,\,\,\,,\,\,\,x = 3\end{array} \right.\) liên tục trên \(\mathbb{R}\)?
A. \(4\)
B. \(3\)
C. \(1\)
D. \( - 4\)
Lời giải của giáo viên
ToanVN.com
Hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) khi và chỉ khi hàm số liên tục tại \(x = 3\).
Ta có \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 2x - 3}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {x - 3} \right)\left( {x + 1} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {x + 1} \right) = 4\).
\(f\left( 3 \right) = 4.3 - 2m = 12 - 2m\).
Để hàm số liên tục tại \(x = 3\) thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Leftrightarrow 4 = 12 - 2m \Leftrightarrow m = 4\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét 2 mệnh đề sau:
(I): Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \(x = {x_0}\) thì \(y = f\left( x \right)\) liên tục tại điểm đó.
(II): Nếu hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0}\) thì \(y = f\left( x \right)\) có đạo hàm tại điểm đó.
(III): Nếu hàm số \(y = f\left( x \right)\) gián đoạn tại điểm \(x = {x_0}\) thì chắc chắn \(y = f\left( x \right)\) không có đạo hàm tại điểm đó.
Tính \(\mathop {\lim }\limits_{x \to 3} \left( {\dfrac{1}{x} - \dfrac{1}{3}} \right)\dfrac{1}{{{{\left( {x - 3} \right)}^3}}}\) bằng:
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và \(AB \bot BC\). Gọi \(I\) là trung điểm của \(BC\). Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là góc nào sau đây?
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm tại điểm \({x_0} = 1\) và \(f'\left( {{x_0}} \right) = \sqrt 2 \). Đạo hàm của hàm số \(y = \sqrt 2 .f\left( x \right) + 1009{x^2}\) tại điểm \({x_0} = 1\) bằng:
Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = a > 0\) thì \(\lim \left( {{u_n}{v_n}} \right)\) bằng:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B,\,\,AB = BC = a\) và \(SA \bot \left( {ABC} \right)\). Góc giữa \(SC\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({45^0}\). Tính \(SA\) .
Đạo hàm của hàm số \(y = \dfrac{1}{{{x^3}}} - \dfrac{1}{{{x^2}}}\) bằng:
Đạo hàm của hàm số \(y = \dfrac{{2x + 3}}{{1 - 4x}}\) bằng:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\,\,SA\) vuông góc với đáy. Gọi \(I\) là trung điểm \(AC\) và \(H\) là hình chiếu vuông góc của \(B\) lên \(SC\). Khi đó \(d\left( {B;\left( {SAC} \right)} \right)\) bằng:
\(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x}}{{\sin 3x}}\) bằng:
Hàm số \(y = \dfrac{{{x^2} - 3x + 4}}{{{x^2} + x - 2}}\) có đạo hàm là:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) và \(SA = SC,\,\,SB = SD\). Mệnh đề nào sau đây sai?
Tính \(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{{x^2} + 6x - 8}}{{{x^2} - 4}}\) bằng:
\(\mathop {\lim }\limits_{x \to + \infty } {q^n} = 0\) nếu:
