Lời giải của giáo viên
ToanVN.com
Có tất cả \(C_{20}^{10}\) cách để lập đề.
Có \(C_{11}^{10} = 11\) cách để lập đề không có câu dễ.
Có \(C_{13}^{10} = 286\) cách để lập đề không có câu trung bình.
Có \(C_{16}^{10} = 8008\) cách để lập đề không có câu khó.
Vậy có tất cả \(C_{20}^{10} - 11 - 286 - 8008 = 176451\) cách để lập đề có cả ba loại câu dễ, trung bình, khó.
Chọn đáp án C
CÂU HỎI CÙNG CHỦ ĐỀ
Phép quay \({Q_{(O;\varphi )}}\) biến điểm A thành M. Khi đó
(I): O cách đều A và M.
(II): O thuộc đường tròn đường kính AM.
(III): O nằm trên cung chứa góc\(\varphi \)dựng trên đoạn AM.
Trong các câu trên, câu đúng là:
Cho đa giác đều n đỉnh, \(n \in \mathbb{N}\) và \(n \ge 3\). Tìm n biết rằng đa giác đã cho có 135 đường chéo:
Trong mặt phẳng với hệ trục tọa độ Oxy cho A ( -2;-3), B ( 4;1). Phép đồng dạng có tỉ số \(k = {1 \over 2}\)biến điểm A thành \(A'\), biến điểm B thành \(B'\). Khi đó độ dài \(A'B'\)là:
Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là:
GTNN và GTLN của hàm số \(y = 4\sqrt {\sin x + 3} - 1\) lần lượt là
Tìm \(x\) biết \(1,{x^2},6 - {x^2}\)lập thành cấp số nhân
Phương trình \(\sin x + \cos x = 1 - \dfrac{1}{2}\sin 2x\) có nghiệm là:
Giải phương trình \(\dfrac{1}{{\sin 2x}} + \dfrac{1}{{\cos 2x}} = \dfrac{2}{{\sin 4x}}\)
Tìm tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\)
Trong mặt phẳng với hệ trục tọa độ Oxy. Cho hai đường tròn \(\left( C \right),\left( {C'} \right)\) trong đó \(\left( {C'} \right)\) có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) . Gọi V là phép vị tự tâm \(I (1;0)\) tỉ số k = 3 biến đường tròn \(\left( C \right)\) thành \(\left( {C'} \right)\). Khi đó phương trình của \(\left( C \right)\) là:
Cho a,b,c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?
Để phương trình \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = m\) có nghiệm ta chọn
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
