Lời giải của giáo viên
ToanVN.com
Ta có
\(\begin{array}{c}b = \dfrac{{a + c}}{2} \Leftrightarrow a + c = 2b \Leftrightarrow {a^2} + {c^2} = 4{b^2} - 2ac\\ \Leftrightarrow {a^2} + {c^2} = 2b(a + c) - 2ac\\ \Leftrightarrow {a^2} + {c^2} = 2ab + 2bc - 2ac\end{array}\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Phép quay \({Q_{(O;\varphi )}}\) biến điểm A thành M. Khi đó
(I): O cách đều A và M.
(II): O thuộc đường tròn đường kính AM.
(III): O nằm trên cung chứa góc\(\varphi \)dựng trên đoạn AM.
Trong các câu trên, câu đúng là:
Trong mặt phẳng với hệ trục tọa độ Oxy cho A ( -2;-3), B ( 4;1). Phép đồng dạng có tỉ số \(k = {1 \over 2}\)biến điểm A thành \(A'\), biến điểm B thành \(B'\). Khi đó độ dài \(A'B'\)là:
Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là:
GTNN và GTLN của hàm số \(y = 4\sqrt {\sin x + 3} - 1\) lần lượt là
Cho đa giác đều n đỉnh, \(n \in \mathbb{N}\) và \(n \ge 3\). Tìm n biết rằng đa giác đã cho có 135 đường chéo:
Tìm \(x\) biết \(1,{x^2},6 - {x^2}\)lập thành cấp số nhân
Từ 20 câu hỏi trắc nghiệm gồm 9 câu dễ, 7 câu trung bình, 4 câu khó người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ cả 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra:
Trong mặt phẳng với hệ trục tọa độ Oxy. Cho hai đường tròn \(\left( C \right),\left( {C'} \right)\) trong đó \(\left( {C'} \right)\) có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) . Gọi V là phép vị tự tâm \(I (1;0)\) tỉ số k = 3 biến đường tròn \(\left( C \right)\) thành \(\left( {C'} \right)\). Khi đó phương trình của \(\left( C \right)\) là:
Để phương trình \({\cos ^2}\left( {\dfrac{x}{2} - \dfrac{\pi }{4}} \right) = m\) có nghiệm ta chọn
Phương trình \(\sin x + \cos x = 1 - \dfrac{1}{2}\sin 2x\) có nghiệm là:
Giải phương trình \(\dfrac{1}{{\sin 2x}} + \dfrac{1}{{\cos 2x}} = \dfrac{2}{{\sin 4x}}\)
Tìm tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\)
Trong mặt phẳng cho 2010 điểm phân biệt sao cho 3 điểm bất kỳ không thẳng hàng. Hỏi có bao nhiêu véc tơ khác véc tơ – không có điểm đầu và điểm cuối thuộc 2010 điểm đã cho:
