Lời giải của giáo viên
ToanVN.com
Trường hợp 1: xếp quyển thứ nhất ở hai đầu thì có số cách sắp là 2.1.8!=80640.
Trường hợp 2: xếp quyển 1 vào một vị trí bất kì vào bên trong dãy sách thì có 8.2.8!= 645120.
Vậy có 80640 + 645120 = 725760 cách xếp.
Chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Một cuộc họp có 13 người, lúc ra về mỗi người đều bắt tay người khác một lần, riêng chủ tọa chỉ bắt tay ba người. Hỏi có bao nhiêu cái bắt tay:
Giả sử rằng qua phép đối xứng trục \({{\rm{D}}_a}\) ( a là trục đối xứng ), đường thẳng d biến thành đường thẳng \(d'\). Hãy chọn câu sai trong các câu sau ?
Số nghiệm của phương trình \(2\cos x + \sqrt 2 = 0\) trên khoảng \(\left( { - 6;6} \right)\) là:
Xác định hệ số của \({x^8}\) trong các khai triển sau: \(f(x) = {\left( {\dfrac{2}{x} - 5{x^3}} \right)^8}\)
Tập xác định của hàm số \(y = \dfrac{{1 - \sin x}}{{\sin x + 1}}\) là:
Cho P, Q cố định và phép tịnh tiến T biến điểm M bất kỳ thành \({M_2}\) sao cho \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \). Chọn kết luận đúng
Cho dãy số \(({u_n})\): \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 2}\\{{u_n} = 3{u_{n - 1}} - 2,n = 2,3...}\end{array}} \right.\). Viết 6 số hạng đầu của dãy :
Cho biết \(\,x = \pm \dfrac{{2\pi }}{3} + k2\pi \) là họ nghiệm của phương trình nào sau đây?
Xét tính tăng, giảm và bị chặn của dãy số \(({u_n})\)biết :\({u_n} = \dfrac{1}{{\sqrt {1 + n + {n^2}} }}\).
Cho dãy số \(({u_n})\)với :\({u_n} = a{.3^n}\) ( a là hằng số ). Khẳng định nào sau đây là sai ?
Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác trên thành chính nó ?
Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:
Cho phương trình: \(\sqrt 3 \cos x + m - 1 = 0\) . Với giá trị nào của m thì phương trình có nghiệm
Giải phương trình \(\cos 2x - \sqrt 3 \sin x = 1\).
Trong mặt phẳng Oxy, cho điểm M (1;5). Tìm ảnh của M qua phép đối xứng trục Ox.
