Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(d\) có phương trình \(3x - y - 3 = 0\). Phép biến hình có được bằng cách thực hiện liên tiếp phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k = - 1\) và phép tịnh tiến theo vectơ \(\overrightarrow v \left( {1;3} \right)\) biến đường thẳng \(d\) thành đường thẳng \(d'\). Viết phương trình đường thẳng \(d'\).
A. \(3x - y + 3 = 0\)
B. \(3x + y + 3 = 0\)
C. \(3x + y - 3 = 0\)
D. \(3x - y - 3 = 0\)
Lời giải của giáo viên
ToanVN.com
Gọi \(M\left( {x;y} \right) \in d:3x - y - 3 = 0\)
Gọi \(M'\left( {x';y'} \right)\) là ảnh của \(M\left( {x;y} \right)\) qua phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k = - 1\).
Khi đó ta có : \(\left\{ \begin{array}{l}x' = - x + \left( {1 - \left( { - 1} \right)} \right).2\\y' = - y + \left( {1 - \left( { - 1} \right)} \right).3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - x' + 4\\y = - y' + 6\end{array} \right.\) nên \(M\left( { - x' + 4; - y' + 6} \right)\)
Mà \(M\left( { - x' + 4; - y' + 6} \right) \in d:3x - y - 3 = 0\) nên ta có :
\(\begin{array}{l}3\left( { - x' + 4} \right) - \left( { - y' + 6} \right) - 3 = 0\\ \Leftrightarrow - 3x' + 12 + y' - 6 - 3 = 0\\ \Leftrightarrow - 3x' + y' + 3 = 0\\ \Leftrightarrow 3x' - y' - 3 = 0\end{array}\)
Do đó, ảnh của đường thẳng \(d:3x - y - 3 = 0\) qua phép vị tự tâm \(I\left( {2;3} \right)\) tỉ số \(k = - 1\) là đường thẳng \(d':3x - y - 3 = 0\)
Ta tìm ảnh của đường thẳng \(d'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {1;3} \right)\)
Gọi \(N\left( {{x_1};{y_1}} \right) \in d':3x - y - 3 = 0\) và \(N'\left( {{x_2};{y_2}} \right)\) là ảnh của qua \({T_{\overrightarrow v }}\)
Khi đó ta có: \(\left\{ \begin{array}{l}{x_2} = {x_1} + 1\\{y_2} = {y_1} + 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2} - 1\\{y_1} = {y_2} - 3\end{array} \right. \Rightarrow N\left( {{x_2} - 1;{y_2} - 3} \right)\)
Thay tọa độ \(N\left( {{x_2} - 1;{y_2} - 3} \right)\) vào phương trình đường thẳng \(d':3x - y - 3 = 0\) ta được:
\(\begin{array}{l}3\left( {{x_2} - 1} \right) - \left( {{y_2} - 3} \right) - 3 = 0\\ \Leftrightarrow 3{x_2} - {y_2} - 3 = 0\end{array}\)
Vậy ảnh của đường thẳng \(d'\) qua phép tịnh tiến theo véc tơ \(\overrightarrow v \left( {1;3} \right)\) là đường thẳng \({d_1}:3x - y - 3 = 0.\)
Hay đường thẳng cần tìm là: \({d_1}:3x - y - 3 = 0.\)
Chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm số điểm biểu diễn các nghiệm của phương trình \(\left| {\sin x - \cos x} \right| + 8\sin x\cos x = 1\) trên đường tròn lượng giác.
Gieo một con súc sắc ba lần liên tiếp. Xác suất để mặt hai chấm xuất hiện cả ba lần là
Trong mặt phẳng tọa độ \(Oxy,\) cho hai điểm \(M\left( {4;6} \right)\) và \(M'\left( { - 3;5} \right).\) Phép vị tự tâm \(I\) tỉ số \(k = \dfrac{1}{2}\) biến điểm \(M\) thành điểm \(M'.\) Tìm tọa độ điểm \(I.\)
Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên gồm có: \(5\) học sinh khối \(10\); \(5\) học sinh khối \(11\); \(5\) học sinh khối \(12\). Chọn ngẫu nhiên \(10\) học sinh từ đội tuyển đi tham dự kì thi \(AMC\). Có bao nhiêu cách chọn được học sinh của cả ba khối và có nhiều nhất hai học sinh khối \(10\) ?
Trong các phương trình sau, phương trình nào có nghiệm?
Tính giá trị của tổng \(T = C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2018}\).
Trong các hàm số sau, hàm số nào nghịch biến trên khoảng \(\left( {\dfrac{\pi }{2};\dfrac{{3\pi }}{2}} \right)\)?
Giải phương trình sau: \(\cos 2x = \dfrac{{\sqrt 3 }}{2}.\)
Xét hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;0} \right].\) Câu khẳng định nào sau đây là đúng ?
Trong mặt phẳng tọa độ \(Oxy,\) cho điểm \(M\left( {1;0} \right).\) Phép quay tâm \(O\) góc quay \(90^\circ \) biến điểm \(M\) thành điểm \(M'\) có tọa độ là
Tìm tập giá trị của hàm số \(y = \cos \left( {2019x - \dfrac{\pi }{4}} \right)\).
Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(d\) có phương trình \(x + y - 2 = 0.\) Phép vị tự tâm \(O\) tỉ số \(k = - 2\) biến đường thẳng \(d\) thành đường thẳng nào trong các đường thẳng có phương trình sau ?
