Trong mặt phẳng tọa độ\(Oxy\), cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\) . Ảnh của \(\left( {\rm{C}} \right)\) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng \(3\) là đường tròn có phương trình
A. \({\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 6} \right)^2} = 36.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)
D. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = 36.\)
Lời giải của giáo viên
ToanVN.com
(C ) có tâm \(J\left( {1;2} \right)\) và bán kính \(R = 2\).
Gọi \(J' = {V_{\left( {I;3} \right)}}\left( J \right) \Rightarrow \overrightarrow {IJ'} = 3\overrightarrow {IJ} \)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}x' - 2 = 3\left( {1 - 2} \right)\\y' + 2 = 3\left( {2 + 2} \right)\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}x' = - 1\\y' = 10\end{array} \right. \Rightarrow J'\left( { - 1;10} \right)\end{array}\)
Đường tròn (C’) có tâm \(J'\left( { - 1;10} \right)\) bán kính \(R' = 3R = 3.2 = 6\)
Vậy \(\left( {C'} \right):{\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)
Chọn A
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị lớn nhất \(M\) của hàm số \(y = 7\cos 5x - 1\).
Cho dãy số có các số hạng đầu là :\( - 2;0;2;4;6;....\)Số hạng tổng quát của dãy số này có dạng ?
Cho cấp số cộng \(({u_n})\) thỏa mãn: \(\left\{ {\begin{array}{*{20}{c}}{{u_7} - {u_3} = 8}\\{{u_{2.}}{u_7} = 75}\end{array}} \right.\) . Tìm \({u_1};d\) ?
Nghiệm của phương trình \(\dfrac{5}{{C_5^x}} - \dfrac{2}{{C_6^x}} = \dfrac{{14}}{{C_7^x}}\)
Cho cấp số cộng \(({u_n})\)có \({u_2} + {u_3} = 20,{u_5} + {u_7} = - 29\). Tìm \({u_1},d\)?
Trong một lớp học có 20 học sinh nữ và 15 học sinh nam. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp:
Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu \(n(\Omega )\)là ?
Từ các chữ số 1,2,4,6,8,9. Lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
Giải phương trình \(\sqrt 3 \sin x + \cos x = 1\).
Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).
Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?
