Trong dịp hội trại hè 2020, bạn Anh thả một quả bóng cao su từ độ cao 6m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết rằng quả bóng luôn chuyển động vuông góc với mặt đất. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng:
A. 44m
B. 45m
C. 42m
D. 43m
Lời giải của giáo viên
ToanVN.com
Ta có quãng đường bóng bay bằng tổng quảng đường bóng nảy lên và quãng đường bóng rơi xuống.
Vì mỗi lần bóng nảy lên bằng 3/4 lần nảy trước nên ta có tổng quãng đường bóng nảy lên là
\({S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} \right)^2} + 6.{\left( {\frac{3}{4}} \right)^3} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\)
Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 6.\frac{3}{4} = \frac{9}{2}\) và công bội \(q = \frac{3}{4}\).
Suy ra \({S_1} = \frac{{\frac{9}{2}}}{{1 - \frac{3}{4}}} = 18\).
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên nên là
\({S_2} = 6 + 6.\left( {\frac{3}{4}} \right) + 6.{\left( {\frac{3}{4}} \right)^2} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\)
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = 6\) và công bội \(q = \frac{3}{4}\).
Suy ra \({S_2} = \frac{6}{{1 - \frac{3}{4}}} = 24\).
Vậy tổng quãng đường bóng bay là \(S = {S_1} + {S_2} = 18 + 24 = 42\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy \(\left( {{u_n}} \right):{u_1} = {{\rm{e}}^3},{u_{n + 1}} = u_n^2,k \in {N^*}\) thỏa mãn \({u_1}.{u_2}...{u_k} = {{\rm{e}}^{765}}\). Giá trị của k là:
Cho cấp số cộng (un) có tất cả các số hạng đều dương thoả mãn \({u_1} + {u_2} + ... + {u_{2018}} = 4\left( {{u_1} + {u_2} + ... + {u_{1009}}} \right)\). Giá trị nhỏ nhất của biểu thức \(P = \log _3^2{u_2} + \log _3^2{u_5} + \log _3^2{u_{14}}\) bằng
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\ln \left( {u_1^2 + u_2^2 + 10} \right) = \ln \left( {2{u_1} + 6{u_2}} \right)\) và \({u_{n + 2}} + {u_n} = 2{u_{n + 1}} + 1\) với mọi \(n \ge 1.\) Giá trị nhỏ nhất của n để un > 5050 bằng bao nhiêu?
Cho cấp số cộng (un) thỏa \(\left\{ \begin{array}{l} {u_2} - {u_3} + {u_5} = 10\\ {u_4} + {u_6} = 26 \end{array} \right.\). Tính \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}}\)
Cho cấp số cộng (un) có các số hạng đều dương, số hạng đầu u1 = 1 và tổng của 100 số hạng đầu tiên bằng 14950. Tính giá trị của tổng \(S = \frac{1}{{{u_2}\sqrt {{u_1}} + {u_1}\sqrt {{u_2}} }} + \frac{1}{{{u_3}\sqrt {{u_2}} + {u_2}\sqrt {{u_3}} }} + ... + \frac{1}{{{u_{2018}}\sqrt {{u_{2017}}} + {u_{2017}}\sqrt {{u_{2018}}} }}\)
Cho cấp số cộng (un) biết \({u_5} = 18\) và \(4{S_n} = {S_{2n}}\). Tìm số hạng đầu tiên và công sai của cấp số cộng.
Xét các số thực dương a, b sao cho -25, 2a, 3b là cấp số cộng và 2, a + 2, b - 3 là cấp số nhân. Khi đó \({a^2} + {b^2} - 3ab\) bằng :
Cho a < b < c là ba số nguyên. Biết a, b, c theo thứ tự tạo thành một cấp số cộng và a, c, b theo thứ tự tạo thành một cấp số nhân. Tìm giá trị nhỏ nhất của c.
Cho dãy số (un) bởi công thức truy hồi sau \(\left\{ {\begin{array}{*{20}{c}} {{u_1} = 0{\rm{ }}}\\ {{u_{n + 1}} = {u_n} + n;{\rm{ }}n \ge 1} \end{array}} \right.\); u218 nhận giá trị nào sau đây?
Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)
Cho hai cấp số cộng \(\left( {{a_n}} \right):{a_1} = 4,{a_2} = 7,...,{a_{100}}\) và \(\left( {{b_n}} \right):{b_1} = 1,{b_2} = 6,...,{b_{100}}\). Hỏi có bao nhiêu số có mặt đồng thời trong cả hai dãy số trên.
Bạn An chơi trò chơi xếp các que diêm thành tháp theo qui tắc thể hiện như hình vẽ. Để xếp được tháp có 10 tầng thì bạn An cần đúng bao nhiêu que diêm?
.png)
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l} {u_1} = 2\\ {u_{n + 1}} = \frac{{{u_n} + \sqrt 2 - 1}}{{1 - \left( {\sqrt 2 - 1} \right){u_n}}} \end{array} \right.\), \(\forall n \in {N^*}\). Tính \({u_{2018}}\).
Trong hội chợ tết, một công ty sữa muốn xếp 900 hộp sữa theo số lượng 1, 3, 5, ... từ trên xuống dưới (số hộp sữa trên mỗi hàng xếp từ trên xuống là các số lẻ liên tiếp - mô hình như hình bên). Hàng dưới cùng có bao nhiêu hộp sữa?
.png)
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng
