Câu hỏi Đáp án 3 năm trước 31

Trong dịp hội trại hè 2017, bạn Anh thả một quả bóng cao su từ độ cao 6m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết rằng quả bóng luôn chuyển động vuông góc với mặt đất. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng:

A. 44m

B. 45m

C. 42m

Đáp án chính xác ✅

D. 43m

Lời giải của giáo viên

verified ToanVN.com

Ta có quãng đường bóng bay bằng tổng quảng đường bóng nảy lên và quãng đường bóng rơi xuống.

Vì mỗi lần bóng nảy lên bằng \(\frac{3}{4}\) lần nảy trước nên ta có tổng quãng đường bóng nảy lên là

\({S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} \right)^2} + 6.{\left( {\frac{3}{4}} \right)^3} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\)

Đây là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 6.\frac{3}{4} = \frac{9}{2}\) và công bội \(q = \frac{3}{4}\). Suy ra \({S_1} = \frac{{\frac{9}{2}}}{{1 - \frac{3}{4}}} = 18\).

Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên nên là 

\({S_2} = 6 + 6.\left( {\frac{3}{4}} \right) + 6.{\left( {\frac{3}{4}} \right)^2} + ... + 6.{\left( {\frac{3}{4}} \right)^n} + ...\)

Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu u1 = 6 và công bội \(q = \frac{3}{4}\). Suy ra \({S_2} = \frac{6}{{1 - \frac{3}{4}}} = 24\).

Vậy tổng quãng đường bóng bay là \(S = {S_1} + {S_2} = 18 + 24 = 42\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)

Xem lời giải » 3 năm trước 151
Câu 2: Trắc nghiệm

Cho dãy số xác định bởi u1 = 1, \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó u2018 bằng

Xem lời giải » 3 năm trước 150
Câu 3: Trắc nghiệm

Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).

Xem lời giải » 3 năm trước 149
Câu 4: Trắc nghiệm

\(\text { Giá trị của giới hạn } \lim \left(4+\frac{(-1)^{n}}{n+1}\right)\)

Xem lời giải » 3 năm trước 61
Câu 5: Trắc nghiệm

Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh a. Gọi M là trung điểm AD. Giá trị \(\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} \) là:

Xem lời giải » 3 năm trước 60
Câu 6: Trắc nghiệm

Cho một cấp số cộng có \({u_1} =  - 3;\,\,{u_6} = 27\). Tìm d ?

Xem lời giải » 3 năm trước 60
Câu 7: Trắc nghiệm

Cho cấp số cộng (un) có: u1 = −0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng này là: 

Xem lời giải » 3 năm trước 59
Câu 8: Trắc nghiệm

Cho ba vectơ \(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Xét các vectơ \(\vec{x}=2 \vec{a}+\vec{b} ; \vec{y}=\vec{a}-\vec{b}-\vec{c} ; \vec{z}=-3 \vec{b}-2 \vec{c}\).Chọn khẳng định đúng? 

Xem lời giải » 3 năm trước 59
Câu 9: Trắc nghiệm

Tìm a để các hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\,x + 2a\,\,{\rm{khi }}\,x < 0}\\ {{x^2} + x + 1\,\,\,{\rm{khi}}\,\,x \ge 0} \end{array}} \right.\) liên tục tại x = 0

Xem lời giải » 3 năm trước 59
Câu 10: Trắc nghiệm

Tìm giới hạn \(B=\lim\limits _{x \rightarrow-\infty}\left(x-\sqrt{x^{2}+x+1}\right)\)

Xem lời giải » 3 năm trước 58
Câu 11: Trắc nghiệm

\(\text { Kết quả của giới hạn } \lim \left(5-\frac{n \cos 2 n}{n^{2}+1}\right) \text { bằng: }\)

Xem lời giải » 3 năm trước 58
Câu 12: Trắc nghiệm

Cho hình chóp S.ABC có hai mặt bên (SBC) và (SAC) vuông góc với đáy (ABC). Khẳng định nào sau đây sai ?

Xem lời giải » 3 năm trước 58
Câu 13: Trắc nghiệm

Tìm giới hạn \(F=\lim\limits _{x \rightarrow-\infty} x\left(\sqrt{4 x^{2}+1}-x\right)\)

Xem lời giải » 3 năm trước 57
Câu 14: Trắc nghiệm

Cho hình lập phương \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\). Đường thẳng AC ' vuông góc với mặt phẳng nào sau đây? 

Xem lời giải » 3 năm trước 57
Câu 15: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, Gọi H là trung điểm của AB và \(S H \perp(A B C D)\). Gọi K là trung điểm của cạnh AD . Khẳng định nào sau đây là sai?

Xem lời giải » 3 năm trước 57

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »