Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}
A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\\
= \mathop {\lim }\limits_{x \to + \infty } \left( {x\sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} - x\sqrt[3]{{2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}}}} \right) = - \infty \\
= \mathop {\lim }\limits_{x \to + \infty } x\left( {\sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} - \sqrt[3]{{2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}}}} \right) = - \infty
\end{array}\)
vì \(\mathop {\lim }\limits_{x \to + \infty } x = + \infty ,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {1 + \frac{1}{x} + \frac{1}{{{x^2}}}} - \sqrt[3]{{2 + \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}}}} \right) = 1 - \sqrt[3]{2} < 0\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tam giác ABC có diện tích S . Tìm giá trị của k thích hợp thỏa mãn: \(S=\frac{1}{2} \sqrt{\overline{A B}^{2} \cdot \overrightarrow{A C}^{2}-2 k(\overline{A B} \cdot \overrightarrow{A C})^{2}}\)
Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 0} \frac{{\cos \;2x - \cos \;3x}}{{x\left( {\sin \;3x\; - \sin \;4x\;} \right)}}\)
Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
Cho sấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính tổng của 15 số hạng đầu của cấp số cộng.
Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD). SC tạo với mặt phẳng (SAB) một góc 30o. Gọi M là một điểm trên cạnh AB sao cho \(BM = 3MA.\) Khoảng cách từ điểm A đến mặt phẳng (SCM) là
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 ;BC = 2a\). Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60o. Khoảng cách từ D đến (SBC) tính theo a bằng
\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{{x^2} - 1}}\) bằng:
Cho cấp số nhân \(\left( {{u_n}} \right);{u_1} = 1,q = 2\). Hỏi số 1024 là số hạng thứ mấy?
Chọn kết quả đúng của \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{1}{{{x^2}}} - \frac{2}{{{x^3}}}} \right)\)
Xét tính tăng giảm của các dãy số sau: \(\left\{\begin{array}{c} u_{1}=1 \\ u_{n+1}=\sqrt[3]{u_{n}^{3}+1}, n \geq 1 \end{array}\right.\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD, DC. Gọi H là giao điểm của CN và DM, biết SH vuông góc (ABCD), \(SH = a\sqrt 3 \). Khoảng cách từ điểm C đến mặt phẳng (SBP) tính theo a bằng
Tìm giới hạn \(C = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} + x + 1} - 2x} \right)\)
Tìm giới hạn \(A = \mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos \;2x}}{{2\sin \;\frac{{3x}}{2}}}\)
