Cho tổng \({S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}}\). Mệnh đề nào đúng?
A. \({S_n} = \dfrac{1}{{n + 1}}\)
B. \({S_n} = \dfrac{n}{{n + 1}}\)
C. \({S_n} = \dfrac{n}{{n + 2}}\)
D. \({S_n} = \dfrac{{n + 1}}{{n + 2}}\)
Lời giải của giáo viên
ToanVN.com
Ta có
\(\begin{array}{c}{S_n} = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{n\left( {n + 1} \right)}}\\ = 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{n} - \dfrac{1}{{n - 1}}\\ = 1 - \dfrac{1}{{n - 1}} = \dfrac{n}{{n - 1}}\end{array}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(({u_n})\) thỏa mãn: \(\left\{ {\begin{array}{*{20}{c}}{{u_7} - {u_3} = 8}\\{{u_{2.}}{u_7} = 75}\end{array}} \right.\) . Tìm \({u_1};d\) ?
Tìm giá trị lớn nhất \(M\) của hàm số \(y = 7\cos 5x - 1\).
Cho dãy số có các số hạng đầu là :\( - 2;0;2;4;6;....\)Số hạng tổng quát của dãy số này có dạng ?
Nghiệm của phương trình \(\dfrac{5}{{C_5^x}} - \dfrac{2}{{C_6^x}} = \dfrac{{14}}{{C_7^x}}\)
Cho cấp số cộng \(({u_n})\)có \({u_2} + {u_3} = 20,{u_5} + {u_7} = - 29\). Tìm \({u_1},d\)?
Trong một lớp học có 20 học sinh nữ và 15 học sinh nam. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp:
Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu \(n(\Omega )\)là ?
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
Từ các chữ số 1,2,4,6,8,9. Lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
Giải phương trình \(\sqrt 3 \sin x + \cos x = 1\).
Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).
Cho dãy số\(\left( {{y_n}} \right)\) xác định bởi \({y_1} = {y_2} = 1\) và \({y_{n + 2}} = {y_{n + 1}} + {y_n},\,\,\forall n \in N*.\) Năm số hạng đầu tiên của dãy số đó là:
