Câu hỏi Đáp án 3 năm trước 34

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân có hai đường chéo AC, BD vuông góc với nhau, \(AD = 2a\sqrt 2 ;BC = a\sqrt 2 \). Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD). Góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 60o. Khoảng cách từ M là trung điểm đoạn AB đến mặt phẳng (SCD) là

A. \(\frac{{a\sqrt {15} }}{2}\)

B. \(\frac{{a\sqrt {15} }}{{20}}\)

C. \(\frac{{3a\sqrt {15} }}{{20}}\)

D. \(\frac{{9a\sqrt {15} }}{{20}}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Do \(\left( {SAC} \right) \bot \left( {ABCD} \right),\left( {SBD} \right) \bot \left( {ABCD} \right),\left( {SAC} \right) \cap \left( {SBD} \right) = SO \Rightarrow SO \bot \left( {ABCD} \right)\)

Dựng góc giữa \(\left( {SCD} \right),(ABCD)\):

\(\left( {SCD} \right) \cap \left( {ABCD} \right) = DC\). Kẻ \(OK \bot DC \Rightarrow SK \bot DC \Rightarrow \left( {\widehat {\left( {SCD} \right),\left( {ABCD} \right)}} \right) = \widehat {SKO}\)

Kéo dài MO cắt DC tại E

Ta có:

\(\widehat {{A_1}} = \widehat {{D_1}};\widehat {{A_1}} = \widehat {{M_1}};\widehat {{M_1}} = \widehat {{M_2}} = \widehat {{O_1}} \\\Rightarrow \widehat {{D_1}} = \widehat {{O_1}};\widehat {{O_1}} + \widehat {EOD} = {90^0} \\\Rightarrow \widehat E = {90^0} \\ \Rightarrow E \equiv K\)

Ta có:  

\(OK = \frac{{2a.a}}{{a\sqrt 5 }};OM = \frac{{AB}}{2} = \frac{{a\sqrt 5 }}{2};MK = \frac{{9a\sqrt 5 }}{{10}}\)

\(\begin{array}{l} \frac{{d(O,(SCD))}}{{d(M,(SCD))}} = \frac{{OE}}{{ME}} = \frac{9}{4} \Rightarrow d\left( {M,(SCD)} \right)\\ = \frac{9}{4}d\left( {O,(SCD)} \right) = \frac{9}{4}OH\\ OS = OK.\tan {60^0} = \frac{{2a\sqrt {15} }}{5} \end{array}\)

\( \Rightarrow OH = \frac{{OK.OS}}{{\sqrt {O{K^2} + O{S^2}} }} = \frac{{a\sqrt {15} }}{5} \Rightarrow d\left( {M,(SCD)} \right) = \frac{{9a\sqrt {15} }}{{20}}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải » 3 năm trước 42
Câu 2: Trắc nghiệm

Cho tam giác ABC có diện tích S . Tìm giá trị của k thích hợp thỏa mãn: \(S=\frac{1}{2} \sqrt{\overline{A B}^{2} \cdot \overrightarrow{A C}^{2}-2 k(\overline{A B} \cdot \overrightarrow{A C})^{2}}\)

Xem lời giải » 3 năm trước 42
Câu 3: Trắc nghiệm

Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?

Xem lời giải » 3 năm trước 40
Câu 4: Trắc nghiệm

Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 0} \frac{{\cos \;2x - \cos \;3x}}{{x\left( {\sin \;3x\; - \sin \;4x\;} \right)}}\)

Xem lời giải » 3 năm trước 39
Câu 5: Trắc nghiệm

Cho sấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính tổng của 15 số hạng đầu của cấp số cộng.

Xem lời giải » 3 năm trước 39
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD). SC tạo với mặt phẳng (SAB) một góc 30o. Gọi M là một điểm trên cạnh AB sao cho \(BM = 3MA.\) Khoảng cách từ điểm A đến mặt phẳng (SCM) là

Xem lời giải » 3 năm trước 39
Câu 7: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 ;BC = 2a\). Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60o. Khoảng cách từ D đến (SBC) tính theo a bằng

Xem lời giải » 3 năm trước 38
Câu 8: Trắc nghiệm

Tìm giới hạn \(C = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {4{x^2} + x + 1}  - 2x} \right)\)

Xem lời giải » 3 năm trước 37
Câu 9: Trắc nghiệm

Cho cấp số nhân \(\left( {{u_n}} \right);{u_1} = 1,q = 2\). Hỏi số 1024 là số hạng thứ mấy?

Xem lời giải » 3 năm trước 37
Câu 10: Trắc nghiệm

Xét tính tăng giảm của các dãy số sau: \(\left\{\begin{array}{c} u_{1}=1 \\ u_{n+1}=\sqrt[3]{u_{n}^{3}+1}, n \geq 1 \end{array}\right.\)

Xem lời giải » 3 năm trước 37
Câu 11: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD, DC. Gọi H là giao điểm của CN và DM, biết SH vuông góc (ABCD), \(SH = a\sqrt 3 \). Khoảng cách từ điểm C đến mặt phẳng (SBP) tính theo a bằng

Xem lời giải » 3 năm trước 37
Câu 12: Trắc nghiệm

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{{x^2} - 1}}\) bằng:

Xem lời giải » 3 năm trước 37
Câu 13: Trắc nghiệm

Chọn kết quả đúng của \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{1}{{{x^2}}} - \frac{2}{{{x^3}}}} \right)\)

Xem lời giải » 3 năm trước 36
Câu 14: Trắc nghiệm

Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính \(S = \frac{1}{{u_1^{}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\)

Xem lời giải » 3 năm trước 36
Câu 15: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải » 3 năm trước 36

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »