Câu hỏi Đáp án 3 năm trước 44

Cho dãy số (un) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng

A. \(\frac{{3280}}{{6561}}\)

B. \(\frac{{25942}}{{59049}}\)

C. \(\frac{{29524}}{{59049}}\)

Đáp án chính xác ✅

D. \(\frac{1}{{243}}\)

Lời giải của giáo viên

verified ToanVN.com

Theo đề ta có: \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{1}{3}\frac{{{u_n}}}{n}\) mà \({u_1} = \frac{1}{3}\) hay \(\frac{{{u_1}}}{1} = \frac{1}{3}\)

Nên ta có \(\frac{{{u_2}}}{2} = \frac{1}{3}.\frac{1}{3} = {\left( {\frac{1}{3}} \right)^2}\); \(\frac{{{u_3}}}{3} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^2} = {\left( {\frac{1}{3}} \right)^3}\); … ; \(\frac{{{u_{10}}}}{{10}} = {\left( {\frac{1}{3}} \right)^{10}}\).

Hay dãy \(\left( {\frac{{{u_n}}}{n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\), công bội \(q = \frac{1}{3}\).

Khi đó 

\(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{59048}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số y = f( x) có đồ thị như hình vẽ, chọn kết luận đúng:

Xem lời giải » 3 năm trước 68
Câu 2: Trắc nghiệm

Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng) bằng

Xem lời giải » 3 năm trước 52
Câu 3: Trắc nghiệm

Tìm giới hạn \(A=\lim \limits_{x \rightarrow-\infty} \frac{\sqrt[3]{3 x^{3}+1}-\sqrt{2 x^{2}+x+1}}{\sqrt[4]{4 x^{4}+2}}\)

Xem lời giải » 3 năm trước 52
Câu 4: Trắc nghiệm

\(\text { Tính giới hạn } L=\lim \frac{n^{2}-3 n^{3}}{2 n^{3}+5 n-2}\)

Xem lời giải » 3 năm trước 49
Câu 5: Trắc nghiệm

Tìm giới hạn \(A=\lim\limits _{x \rightarrow+\infty} \frac{(2 x+1)^{3}(x+2)^{4}}{(3-2 x)^{7}}\)

Xem lời giải » 3 năm trước 49
Câu 6: Trắc nghiệm

Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy đường thẳng vuông góc với \(\Delta\) cho trước? 

Xem lời giải » 3 năm trước 48
Câu 7: Trắc nghiệm

\(\text { Tính giới hạn } L=\lim \frac{n^{2}+n+5}{2 n^{2}+1} \text { . }\)

Xem lời giải » 3 năm trước 48
Câu 8: Trắc nghiệm

Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Đường thẳng AB vuông góc với?

Xem lời giải » 3 năm trước 48
Câu 9: Trắc nghiệm

Tìm giới hạn \(B=\lim\limits _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-3 x+4}-2 x}{\sqrt{x^{2}+x+1}-x}\)

Xem lời giải » 3 năm trước 46
Câu 10: Trắc nghiệm

Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

Xem lời giải » 3 năm trước 46
Câu 11: Trắc nghiệm

Trong không gian cho hai tam giác đều ABC và ABC' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC' và C'A. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CC'} \)?

Xem lời giải » 3 năm trước 46
Câu 12: Trắc nghiệm

Cho tứ diện ABCD đều cạnh bằng a. Gọi M là trung điểm CD, \(\alpha\) là góc giữa AC và BM. Chọn khẳng định đúng?

Xem lời giải » 3 năm trước 46
Câu 13: Trắc nghiệm

Cho dãy số \(\left(u_{n}\right) \text { vớii } u_{n}=\frac{4 n^{2}+n+2}{a n^{2}+5}\). Để dãy số đã cho có giới hạn bằng 2 , giá trị của a là:

Xem lời giải » 3 năm trước 46
Câu 14: Trắc nghiệm

Tìm giới hạn \(B=\lim \limits_{x \rightarrow+\infty} \frac{x \sqrt{x^{2}+1}-2 x+1}{\sqrt[3]{2 x^{3}-2}+1}\)

Xem lời giải » 3 năm trước 46
Câu 15: Trắc nghiệm

Tam giác ABC có ba cạnh a, b, c thỏa mãn a2, b2, c2 theo thứ tự đó lập thành một cấp số cộng. Chọn khẳng định đúng trong các khẳng định sau:

Xem lời giải » 3 năm trước 45

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »