Câu hỏi Đáp án 3 năm trước 54

Cho dãy số (un) được xác định bởi u1 = 2; \({u_n} = 2{u_{n - 1}} + 3n - 1\). Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng \(a{.2^n} + bn + c\), với a, b, c là các số nguyên, \(n \ge 2\); \(n \in N\). Khi đó tổng a + b + c có giá trị bằng

A. -4

B. 4

C. -3

Đáp án chính xác ✅

D. 3

Lời giải của giáo viên

verified ToanVN.com

Ta có \({u_n} = 2{u_{n - 1}} + 3n - 1 \Leftrightarrow {u_n} + 3n + 5 = 2\left[ {{u_{n - 1}} + 3\left( {n - 1} \right) + 5} \right]\) với \(n \ge 2\); \(n \in N\).

Đặt \({v_n} = {u_n} + 3n + 5\), ta có \({v_n} = 2{v_{n - 1}}\) với \(n \ge 2\); \(n \in N\).

Như vậy, (vn) là cấp số nhân với công bội q = 2 và \({v_1} = 10\), do đó \({v_n} = {10.2^{n - 1}} = {5.2^n}\).

Do đó \({u_n} + 3n + 5 = {5.2^n}\), hay \({u_n} = {5.2^n} - 3n - 5\) với \(n \ge 2\); \(n \in N\).

Suy ra a = 5, b = -3, c = -5. Nên \(a + b + c = 5 + \left( { - 3} \right) + \left( { - 5} \right) = - 3\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho dãy số (un) có \({u_1} = \frac{1}{5}\) và \({u_{n + 1}} = \frac{{n + 1}}{{5n}}{u_n}\), \(\forall n \ge 1\). Tìm tất cả giá trị n để \(S = \sum\limits_{k = 1}^n {\frac{{{u_k}}}{k} < \frac{{{5^{2018}} - 1}}{{{{4.5}^{2018}}}}} \)

Xem lời giải » 3 năm trước 151
Câu 2: Trắc nghiệm

Cho dãy số xác định bởi u1 = 1, \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó u2018 bằng

Xem lời giải » 3 năm trước 150
Câu 3: Trắc nghiệm

Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).

Xem lời giải » 3 năm trước 149
Câu 4: Trắc nghiệm

\(\text { Giá trị của giới hạn } \lim \left(4+\frac{(-1)^{n}}{n+1}\right)\)

Xem lời giải » 3 năm trước 61
Câu 5: Trắc nghiệm

Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh a. Gọi M là trung điểm AD. Giá trị \(\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} \) là:

Xem lời giải » 3 năm trước 60
Câu 6: Trắc nghiệm

Cho một cấp số cộng có \({u_1} =  - 3;\,\,{u_6} = 27\). Tìm d ?

Xem lời giải » 3 năm trước 60
Câu 7: Trắc nghiệm

Cho cấp số cộng (un) có: u1 = −0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng này là: 

Xem lời giải » 3 năm trước 59
Câu 8: Trắc nghiệm

Cho ba vectơ \(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Xét các vectơ \(\vec{x}=2 \vec{a}+\vec{b} ; \vec{y}=\vec{a}-\vec{b}-\vec{c} ; \vec{z}=-3 \vec{b}-2 \vec{c}\).Chọn khẳng định đúng? 

Xem lời giải » 3 năm trước 59
Câu 9: Trắc nghiệm

Tìm a để các hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {\,x + 2a\,\,{\rm{khi }}\,x < 0}\\ {{x^2} + x + 1\,\,\,{\rm{khi}}\,\,x \ge 0} \end{array}} \right.\) liên tục tại x = 0

Xem lời giải » 3 năm trước 59
Câu 10: Trắc nghiệm

Tìm giới hạn \(B=\lim\limits _{x \rightarrow-\infty}\left(x-\sqrt{x^{2}+x+1}\right)\)

Xem lời giải » 3 năm trước 58
Câu 11: Trắc nghiệm

\(\text { Kết quả của giới hạn } \lim \left(5-\frac{n \cos 2 n}{n^{2}+1}\right) \text { bằng: }\)

Xem lời giải » 3 năm trước 58
Câu 12: Trắc nghiệm

Cho hình chóp S.ABC có hai mặt bên (SBC) và (SAC) vuông góc với đáy (ABC). Khẳng định nào sau đây sai ?

Xem lời giải » 3 năm trước 58
Câu 13: Trắc nghiệm

Tìm giới hạn \(F=\lim\limits _{x \rightarrow-\infty} x\left(\sqrt{4 x^{2}+1}-x\right)\)

Xem lời giải » 3 năm trước 57
Câu 14: Trắc nghiệm

Cho hình lập phương \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\). Đường thẳng AC ' vuông góc với mặt phẳng nào sau đây? 

Xem lời giải » 3 năm trước 57
Câu 15: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, Gọi H là trung điểm của AB và \(S H \perp(A B C D)\). Gọi K là trung điểm của cạnh AD . Khẳng định nào sau đây là sai?

Xem lời giải » 3 năm trước 57

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »