Lời giải của giáo viên
ToanVN.com
Gọi bốn số hạng liên tiếp của cấp số cộng là x; y; z; t. Khi đó:
\(\begin{array}{c}\left\{ \begin{array}{l}x + y + z + t = 22\\{x^2} + {y^2} + {z^2} + {t^2} = 166\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + 6d = 22\\{x^2} + {\left( {x + d} \right)^2} + {\left( {x + 2d} \right)^2} + {\left( {x + 3d} \right)^2} = 166\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}d = \dfrac{{11 - 2x}}{3}\\\dfrac{{20}}{9}{x^2} - \dfrac{{220}}{9}x + \dfrac{{200}}{9} = 0\end{array} \right.\\\Leftrightarrow \left\{ \begin{array}{l}d = \dfrac{{11 - 2x}}{3}\\\left[ \begin{array}{l}x = 1\\x = 10\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 1\\d = 3\end{array} \right.\\\left\{ \begin{array}{l}x = 10\\d = - 3\end{array} \right.\end{array} \right. \Leftrightarrow 1;4;7;10\end{array}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị lớn nhất \(M\) của hàm số \(y = 7\cos 5x - 1\).
Cho dãy số có các số hạng đầu là :\( - 2;0;2;4;6;....\)Số hạng tổng quát của dãy số này có dạng ?
Cho cấp số cộng \(({u_n})\) thỏa mãn: \(\left\{ {\begin{array}{*{20}{c}}{{u_7} - {u_3} = 8}\\{{u_{2.}}{u_7} = 75}\end{array}} \right.\) . Tìm \({u_1};d\) ?
Nghiệm của phương trình \(\dfrac{5}{{C_5^x}} - \dfrac{2}{{C_6^x}} = \dfrac{{14}}{{C_7^x}}\)
Cho cấp số cộng \(({u_n})\)có \({u_2} + {u_3} = 20,{u_5} + {u_7} = - 29\). Tìm \({u_1},d\)?
Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu \(n(\Omega )\)là ?
Trong một lớp học có 20 học sinh nữ và 15 học sinh nam. Hỏi giáo viên chủ nhiệm có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp:
Từ các chữ số 1,2,4,6,8,9. Lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
Trong mặt phẳng tọa độ \(Oxy\), tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).
Giải phương trình \(\sqrt 3 \sin x + \cos x = 1\).
Cho tam giác đều \(ABC\) có tâm là điểm \(O\). Phép quay tâm \(O\), góc quay φ biến tam giác ABC thành chính nó. Khi đó đó một góc φ thỏa mãn là
