Cho cấp số cộng \(({u_n})\) có công sai \(d > 0\); \(\left\{ {\begin{array}{*{20}{c}}{{u_{31}} + {u_{34}} = 11}\\{{u^2}_{31} + {u^2}_{34} = 101}\end{array}} \right.\). Hãy tìm số hạng tổng quát của cấp số cộng đó.
A. \({u_n} = 3n - 9\)
B. \({u_n} = 3n - 2\)
C. \({u_n} = 3n - 92\)
D. \({u_n} = 3n - 66\)
Lời giải của giáo viên
ToanVN.com
Ta có:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{{u_{31}} + {u_{34}} = 11}\\{{u^2}_{31} + {u^2}_{34} = 101}\end{array}} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\{u^2}_{31} + {(11 - {u_{31}})^2} = 101\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{u_{31}} = 1\\{u_{34}} = 10\end{array} \right.\\\left\{ \begin{array}{l}{u_{31}} = 10\\{u_{34}} = 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{u_1} = - 89\\d = 3\end{array} \right.\\\left\{ \begin{array}{l}{u_1} = 100\\d = - 3\end{array} \right.\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 89\\d = 3\end{array} \right.(d > 0)\end{array}\)
\({u_n} = - 89 + (n - 1)3 = 3n - 92\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu toàn màu xanh là:
Cho hàm số \(f\left( x \right) = \left| x \right|\sin x.\) Phát biểu nào sau đây là đúng về hàm số đã cho?
Cho đường thẳng \(d:3x + y + 3 = 0\). Viết phương trình của đường thẳng \(d'\) là ảnh của \(d\) qua phép dời hình có được bằng cách thược hiện liên tiếp phép quay tâm \(I\left( {1;2} \right)\), góc \( - {180^0}\) và phép tịnh tiến theo vec tơ \(\overrightarrow v = \left( { - 2;1} \right)\).
Hàm số \(y = \sin 3x.\cos x\) là một hàm số tuần hoàn có chu kì là
Trong mặt phẳng Oxy, tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Dân số của thành phố A hiện nay là \(3\) triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là \(2\% \). Dân số của thành phố A sau \(3\) năm nữa sẽ là:
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:
Tìm chu kì T của hàm số \(y = \cot 3x + \tan x\) là
Giá trị của \(n \in \mathbb{N}\) thỏa mãn \(C_{n + 8}^{n + 3} = 5A_{n + 6}^3\) là:
Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x = - \dfrac{\pi }{3} + k2\pi \) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\)
Tập xác định của hàm số \(y = \sqrt {1 - \cos 2017x} \) là
Trong mặt phẳng tọa độ\(Oxy\), cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\) . Ảnh của \(\left( {\rm{C}} \right)\) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng \(3\) là đường tròn có phương trình
