Lời giải của giáo viên
ToanVN.com
Ta có \(n\left( \Omega \right) = C_{10}^3 = 120\)
Gọi A là: “3 quả cầu toàn màu xanh”. Khi đó \(n\left( A \right) = C_4^3 = 4\)
Suy ra \(P\left( A \right) = \dfrac{4}{{120}} = \dfrac{1}{{30}}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \left| x \right|\sin x.\) Phát biểu nào sau đây là đúng về hàm số đã cho?
Hàm số \(y = \sin 3x.\cos x\) là một hàm số tuần hoàn có chu kì là
Cho đường thẳng \(d:3x + y + 3 = 0\). Viết phương trình của đường thẳng \(d'\) là ảnh của \(d\) qua phép dời hình có được bằng cách thược hiện liên tiếp phép quay tâm \(I\left( {1;2} \right)\), góc \( - {180^0}\) và phép tịnh tiến theo vec tơ \(\overrightarrow v = \left( { - 2;1} \right)\).
Trong mặt phẳng Oxy, tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)
Nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}\,x}} = 3\cot \, + \,\sqrt 3 \) là:
Dân số của thành phố A hiện nay là \(3\) triệu người. Biết rằng tỉ lệ tăng dân số hàng năm của thành phố A là \(2\% \). Dân số của thành phố A sau \(3\) năm nữa sẽ là:
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là:
Tìm chu kì T của hàm số \(y = \cot 3x + \tan x\) là
Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x = - \dfrac{\pi }{3} + k2\pi \) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\)
Giá trị của \(n \in \mathbb{N}\) thỏa mãn \(C_{n + 8}^{n + 3} = 5A_{n + 6}^3\) là:
Tập xác định của hàm số \(y = \sqrt {1 - \cos 2017x} \) là
Trong mặt phẳng tọa độ\(Oxy\), cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\) . Ảnh của \(\left( {\rm{C}} \right)\) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng \(3\) là đường tròn có phương trình
Có tất cả 120 cách chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây:
