Cho khối lăng trụ có diện tích đáy B = 3 và chiều cao h = 4. Thể tích của khối lăng trụ đã cho bằng
lượt xem
Cho hai hàm số f(x), g(x) liên tục trên đoạn [a;b] và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai?
lượt xem
Tìm tập xác định D của hàm số \(y = {\left( {2x - 1} \right)^{\frac{1}{3}}}\).
lượt xem
Cho khối hộp chữ nhật có độ dài ba kích thước lần lượt là 4; 6 ;8. Thể tích khối hộp chữ nhật đã cho bằng
lượt xem
Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là
lượt xem
Cho cấp số nhân (un) với u1 = 2 và u4 = 16. Công bội của cấp số nhân đã cho bằng
lượt xem
Lớp 11B có 20 học sinh nam và 25 học sinh nữ. Có bao nhiêu cách chọn một đôi song ca gồm 1 nam và 1 nữ?
lượt xem
lượt xem
Cho tứ diện ABCD có \(\widehat {DAB} = \widehat {CBD} = 90^\circ ;AB = a;\;AC = a\sqrt 5 ;\;\widehat {ABC} = 135^\circ \). Biết góc giữa hai mặt phẳng (ABD), (BCD) bằng 30o. Thể tích của tứ diện ABCD là
lượt xem
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho \(M \le 2m\)?
lượt xem
Cho x, y thỏa mãn \({\log _3}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của \(P = \frac{{3x + 2y - 9}}{{x + y + 10}}\) khi x, y thay đổi.
lượt xem
Cho hàm số y = f(x) có bảng xét dấu của f'(x) như sau.
Xét hàm số \(g\left( x \right) = {e^{f\left( {1 + x + {x^2}} \right)}}\), tập nghiệm của bất phương trình g'(x) > 0 là
lượt xem
Cho tích phân \(I = \int\limits_0^1 {\left( {x + 2} \right)\ln \left( {x + 1} \right){\rm{d}}x} = a\ln 2 - \frac{7}{b}\) trong đó a, b là các số nguyên dương. Tổng a + b2 bằng
lượt xem
lượt xem
Cho hàm số \(y = f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), trong đó (m,n,p,q,r \in R\). Biết hàm số y = f'(x) có đồ thị như hình bên dưới.
.png)
Số nghiệm của phương trình f(x) = 16m + 8n + 4p + 2q + r là
lượt xem
lượt xem
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
lượt xem
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, BC = SB = a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trung điểm của BC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng
lượt xem
lượt xem
Trong không gian với hệ trục tọa độ (Oxyz), phương trình đường thẳng d đi qua điểm A(1;2;1) và vuông góc với mặt phẳng (P): x - 2y + z - 1 = 0 có dạng
lượt xem
Trong không gian Oxyz, cho hai điểm A(3;1;-1), B(2;-1;4). Phương trình mặt phẳng (OAB) (O là gốc tọa độ) là
lượt xem
Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện \(\left| {\overline z + 1 + 2i} \right| = 1\) là
lượt xem
Cho hai số phức \({z_1} = 2 + 3i\) và \({z_2} = - 3 - 5i\). Tính tổng phần thực và phần ảo của số phức \(w = {z_1} + {z_2}\)
lượt xem
Diện tích hình phẳng giới hạn bởi hai đồ thị \(f\left( x \right) = {x^3} - 3x + 2;g\left( x \right) = x + 2\) là:
lượt xem
Cho hàm số y = f(x) liên tục trên R và \(f\left( 2 \right) = 16,\;\int\limits_0^2 {f\left( x \right)\,} {\rm{d}}x = 4\). Tính \(\int\limits_0^4 {xf'\left( {\frac{x}{2}} \right)\,} {\rm{d}}x\)
lượt xem
Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng \(9 \pi\). Tính đường cao h của hình nón.
lượt xem
Bất phương trình \({\log _2}(3x - 2) > {\log _2}(6 - 5x)\) có tập nghiệm là (a;b). Tổng a + b bằng
lượt xem
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tập tất cả các giá trị của tham số m để phương trình f(x) = m có ba nghiệm phân biệt là
lượt xem
Cho \({\log _2}5 = a;{\rm{ }}{\log _3}5 = b\). Tính \({\log _6}5\) theo a và b .
lượt xem
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] bằng:
lượt xem
Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau
Hàm số đã cho có bao nhiêu điểm cực trị?
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(\sqrt 2 a\), SA vuông góc với mặt phẳng đáy và \(SA = 2\sqrt 3 a\). Góc giữa SC và mặt phẳng (ABCD) bằng
lượt xem
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \((d):\frac{{x + 3}}{2} = \frac{{y - 1}}{{ - 3}} = \frac{{z + 2}}{{ - 1}}\)?
lượt xem
Trong không gian Oxyz, cho mặt phẳng (P):x + 3y - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
lượt xem
Trong không gian Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y - 1)^2} + {(z + 5)^2} = 25\). Tìm tọa độ tâm của mặt cầu (S).
lượt xem
Trong không gian Oxyz, hình chiếu của điểm M(2;-2;1) trên mặt phẳng (Oyz) có tọa độ là
lượt xem
Tìm số phức liên hợp \(\bar z\) của số phức z = (3 - 2i)(2 + 3i).
lượt xem
Gọi z1, z2 là hai nghiệm phức của phương trình \(2{z^2} + \sqrt 3 z + 3 = 0\). Giá trị của biểu thức \(z_1^2 + z_2^2\) bằng
lượt xem
Môđun của số phức 6 - 5i bằng
lượt xem
Nếu \(\int\limits_{ - 1}^3 {f(x)dx = - 4} \) và \(\int\limits_2^3 {f(x)dx = 3} \) thì \(\int\limits_{ - 1}^2 {f(x)dx} \) bằng
lượt xem
Cho hàm số y = f(x) có bảng biến thiên như hình bên. Số nghiệm của phương trình f(x) + 1 = 0 là:
lượt xem
Giải bất phương trình \({\log _3}\left( {2x - 5} \right) > 2\).
lượt xem
Tìm tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 2021}}{{x + 1}}\)
lượt xem
Đồ thị của hàm số nào có dạng như đường cong ở hình dưới?
lượt xem
Cho hàm số f(x) có bảng biến thiên sau
Giá trị cực tiểu của hàm số đã cho bằng
lượt xem
Tính diện tích xung quanh của hình trụ có độ dài đường sinh l = 5 bán kính đáy r = 4.
lượt xem
Với a, b là các số thực dương tùy ý, \({\log _2}{a^2}{b^3}\) bằng
lượt xem
Cho hàm số f(x) có bảng biến thiên sau
.png)
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
lượt xem
Tính diện tính mặt cầu bán kính r = 2a
lượt xem
Cho khối nón có chiều cao h = 5, bán kính đáy r = 3. Tính thể tích của khối nón đã cho.
lượt xem