Một người vay ngân hàng 500 triệu đồng với lãi suất 1,2%/ tháng để mua xe ô tô. Sau đúng một tháng kể từ ngày vay thì người đó bắt đầu trả nợ và đều đặn cứ mỗi tháng người đó sẽ trả cho ngân hàng 20 triệu đồng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 20 triệu đồng). Hỏi sau bao nhiêu tháng thì người đó trả được hết nợ ngân hàng? Biết rằng lãi suất không thay đổi.
A. 30 tháng.
B. 26 tháng.
C. 29 tháng.
D. 32 tháng.
Lời giải của giáo viên
ToanVN.com
Sau 1 tháng dư nợ là: \({N_1} = N\left( {1 + r} \right) - m\) với N = 500 triệu đồng, r = 0,012, m=20 triệu đồng.
Sau 2 tháng dư nợ là: \({N_2} = {N_1}\left( {1 + r} \right) - m = N{\left( {1 + r} \right)^2} - m\left[ {1 + \left( {1 + r} \right)} \right]\).
Sau tháng thứ n dư nợ là: \({N_n} = N{\left( {1 + r} \right)^n} - m\left[ {1 + \left( {1 + r} \right) + {{\left( {1 + r} \right)}^2} + ... + {{\left( {1 + r} \right)}^{n - 1}}} \right]\)
\( = N{\left( {1 + r} \right)^n} - m\left[ {\frac{{1.{{\left( {1 + r} \right)}^n} - 1}}{{1 + r - 1}}} \right] = \left( {N - \frac{m}{r}} \right){\left( {1 + r} \right)^n} + \frac{m}{r}\)
Người đó trả hết nợ ngân hàng khi dư nợ bằng 0 nên ta có:
\(\left( {N - \frac{m}{r}} \right){\left( {1 + r} \right)^n} + \frac{m}{r} = 0 \)
\( \Leftrightarrow {\left( {1 + r} \right)^n} = \frac{m}{{m - Nr}}\)
\( \Leftrightarrow 1,{012^n} = \frac{{20}}{{20 - 500.0,012}}\)
\( \Leftrightarrow 1,{012^n} = \frac{{10}}{7}\)
\( \Leftrightarrow n = {\log _{1,012}}\frac{{10}}{7} \Leftrightarrow n \approx 29,90\)
Vậy sau 30 tháng người đó trả hết nợ ngân hàng.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích khối hộp chữ nhật có ba kích thước \(a = 4,{\rm{ }}b = 5,{\rm{ }}c = 6\)
Cho \({\log _2}5 = a;{\rm{ }}{\log _3}5 = b\). Tính \({\log _6}5\) theo a và b .
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho \(M \le 2m\)?
Diện tích hình phẳng giới hạn bởi hai đồ thị \(f\left( x \right) = {x^3} - 3x + 2;g\left( x \right) = x + 2\) là:
Tập xác định của hàm số \(y = {\log _2}\left( {x - 2} \right)\) là
Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng \(9 \pi\). Tính đường cao h của hình nón.
Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau
Hàm số đã cho có bao nhiêu điểm cực trị?
Cho hàm số \(y = f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), trong đó (m,n,p,q,r \in R\). Biết hàm số y = f'(x) có đồ thị như hình bên dưới.
.png)
Số nghiệm của phương trình f(x) = 16m + 8n + 4p + 2q + r là
Trong không gian Oxyz, cho mặt phẳng (P):x + 3y - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
Cho x, y thỏa mãn \({\log _3}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của \(P = \frac{{3x + 2y - 9}}{{x + y + 10}}\) khi x, y thay đổi.
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] bằng:
Bất phương trình \({\log _2}(3x - 2) > {\log _2}(6 - 5x)\) có tập nghiệm là (a;b). Tổng a + b bằng
Trong không gian Oxyz, hình chiếu của điểm M(2;-2;1) trên mặt phẳng (Oyz) có tọa độ là


