Trong không gian với hệ trục tọa độ (Oxyz), phương trình đường thẳng d đi qua điểm A(1;2;1) và vuông góc với mặt phẳng (P): x - 2y + z - 1 = 0 có dạng
A. \(d:\frac{{x + 1}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z + 1}}{1}\)
B. \(d:\frac{{x + 2}}{1} = \frac{y}{{ - 2}} = \frac{{z + 2}}{1}\)
C. \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 1}}{1}\)
D. \(d:\frac{{x - 2}}{2} = \frac{y}{{ - 4}} = \frac{{z - 2}}{2}\)
Lời giải của giáo viên
ToanVN.com
Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow {{n_P}} = \left( {1; - 2;1} \right)\).
Vì \(d \bot \left( P \right)\) nên \(\overrightarrow {{n_P}} = \left( {1; - 2;1} \right)\) cũng là vecto chỉ phương của đường thẳng d.
Suy ra phương trình đường thẳng d thường gặp là \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 1}}{1}\)
So với đáp án không có, nên đường thẳng d theo bài là đường có vecto chỉ phương cùng phương với \(\overrightarrow {{n_P}} \) và đi qua điểm A(1;2;1).
Thay tọa độ điểm A(1;2;1) vào 3 đáp án A, B, D thấy đáp án D thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích khối hộp chữ nhật có ba kích thước \(a = 4,{\rm{ }}b = 5,{\rm{ }}c = 6\)
Cho \({\log _2}5 = a;{\rm{ }}{\log _3}5 = b\). Tính \({\log _6}5\) theo a và b .
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho \(M \le 2m\)?
Diện tích hình phẳng giới hạn bởi hai đồ thị \(f\left( x \right) = {x^3} - 3x + 2;g\left( x \right) = x + 2\) là:
Tập xác định của hàm số \(y = {\log _2}\left( {x - 2} \right)\) là
Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng \(9 \pi\). Tính đường cao h của hình nón.
Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau
Hàm số đã cho có bao nhiêu điểm cực trị?
Cho hàm số \(y = f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), trong đó (m,n,p,q,r \in R\). Biết hàm số y = f'(x) có đồ thị như hình bên dưới.
.png)
Số nghiệm của phương trình f(x) = 16m + 8n + 4p + 2q + r là
Trong không gian Oxyz, cho mặt phẳng (P):x + 3y - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] bằng:
Cho x, y thỏa mãn \({\log _3}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của \(P = \frac{{3x + 2y - 9}}{{x + y + 10}}\) khi x, y thay đổi.
Trong không gian Oxyz, hình chiếu của điểm M(2;-2;1) trên mặt phẳng (Oyz) có tọa độ là


