Một bác thợ gốm làm một cái lọ có dạng khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {x + 1} \) và trục Ox, quay quanh trục Ox. Biết đáy lọ và miệng lọ có đường kính lần lượt là 2dm và 4dm, khi đó thể tích của lọ là :
A. \(8\pi \,{\rm{d}}{{\rm{m}}^{\rm{3}}}\)
B. \(\frac{{15}}{2}\pi \,{\rm{d}}{{\rm{m}}^{\rm{3}}}\)
C. \(\frac{{14}}{3}\pi \,{\rm{d}}{{\rm{m}}^{\rm{3}}}\)
D. \(\frac{{15}}{2}\,{\rm{d}}{{\rm{m}}^{\rm{3}}}\)
Lời giải của giáo viên
ToanVN.com
Ta có đáy lọ có đường kính bằng 2dm suy ra bán kính đáy lọ bằng 1dm. Do đó
\(y = 1 \Rightarrow \sqrt {x + 1} = 1 \Leftrightarrow x = 0\)
Ta có miệng lọ có đường kính bằng 4dm suy ra bán kính miệng lọ bằng 2dm. Do đó
\(y = 2 \Rightarrow \sqrt {x + 1} = 2 \Leftrightarrow x = 3\)
Khi đó \(V = \pi \int\limits_0^3 {{{\left( {\sqrt {x + 1} } \right)}^2}} {\rm{dx = }}\frac{{15}}{2}\pi \)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích khối hộp chữ nhật có ba kích thước \(a = 4,{\rm{ }}b = 5,{\rm{ }}c = 6\)
Cho \({\log _2}5 = a;{\rm{ }}{\log _3}5 = b\). Tính \({\log _6}5\) theo a và b .
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho \(M \le 2m\)?
Diện tích hình phẳng giới hạn bởi hai đồ thị \(f\left( x \right) = {x^3} - 3x + 2;g\left( x \right) = x + 2\) là:
Tập xác định của hàm số \(y = {\log _2}\left( {x - 2} \right)\) là
Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng \(9 \pi\). Tính đường cao h của hình nón.
Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau
Hàm số đã cho có bao nhiêu điểm cực trị?
Cho hàm số \(y = f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), trong đó (m,n,p,q,r \in R\). Biết hàm số y = f'(x) có đồ thị như hình bên dưới.
.png)
Số nghiệm của phương trình f(x) = 16m + 8n + 4p + 2q + r là
Trong không gian Oxyz, cho mặt phẳng (P):x + 3y - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
Cho x, y thỏa mãn \({\log _3}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của \(P = \frac{{3x + 2y - 9}}{{x + y + 10}}\) khi x, y thay đổi.
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] bằng:
Bất phương trình \({\log _2}(3x - 2) > {\log _2}(6 - 5x)\) có tập nghiệm là (a;b). Tổng a + b bằng
Trong không gian Oxyz, hình chiếu của điểm M(2;-2;1) trên mặt phẳng (Oyz) có tọa độ là


