Kết quả (b;c) của việc gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện của lần gieo thứ hai được thay vào phương trình bậc hai \({x^2} + bx + c = 0\). Xác suất để phương trình bậc hai đó vô nghiệm là
A. \(\frac{7}{{12}}\)
B. \(\frac{{17}}{{36}}\)
C. \(\frac{{23}}{{36}}\)
D. \(\frac{5}{{36}}\)
Lời giải của giáo viên
ToanVN.com
Số phần tử của không gian mẫu là 36.
Xét phương trình \({x^2} + bx + c = 0\) có \(\Delta = {b^2} - 4c\), với \(b,c \in \overline {1,6} \).
Phương trình vô nghiệm \( \Leftrightarrow \Delta < 0 \Leftrightarrow b < 2\sqrt c \).
Suy ra có 17 cách gieo để phương trình vô nghiệm.
Vậy xác suất cần tìm là \(P = \frac{{17}}{{36}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích khối hộp chữ nhật có ba kích thước \(a = 4,{\rm{ }}b = 5,{\rm{ }}c = 6\)
Cho \({\log _2}5 = a;{\rm{ }}{\log _3}5 = b\). Tính \({\log _6}5\) theo a và b .
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
Cho hàm số \(f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\). Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;2]. Có bao nhiêu số nguyên a thuộc [-4;4] sao cho \(M \le 2m\)?
Diện tích hình phẳng giới hạn bởi hai đồ thị \(f\left( x \right) = {x^3} - 3x + 2;g\left( x \right) = x + 2\) là:
Tập xác định của hàm số \(y = {\log _2}\left( {x - 2} \right)\) là
Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng \(9 \pi\). Tính đường cao h của hình nón.
Cho hàm số \(y = f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), trong đó (m,n,p,q,r \in R\). Biết hàm số y = f'(x) có đồ thị như hình bên dưới.
.png)
Số nghiệm của phương trình f(x) = 16m + 8n + 4p + 2q + r là
Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau
Hàm số đã cho có bao nhiêu điểm cực trị?
Trong không gian Oxyz, cho mặt phẳng (P):x + 3y - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
Cho x, y thỏa mãn \({\log _3}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của \(P = \frac{{3x + 2y - 9}}{{x + y + 10}}\) khi x, y thay đổi.
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] bằng:
Trong không gian Oxyz, hình chiếu của điểm M(2;-2;1) trên mặt phẳng (Oyz) có tọa độ là


