Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật,AB =2a, AD = a cạnh bên SA vuông góc với đáy, SA=3a.Thể tích của khối chóp S.ABCD là
lượt xem
Tìm họ nguyên hàm của hàm số f(x) = sin(2020ax+1) ( Với a là tham số khác 0)
lượt xem
Tập xác định của hàm số \(y = {\log _3}\left( {x - 2} \right)\) là
lượt xem
Tính thể tích của khối tứ diện ABCD, biết AB,AC,AD đôi một vuông góc và lần lượt có độ dài bằng 2,4,3?
lượt xem
Nghiệm của phương trình \({\log _2}\left( {3{\rm{x}} - 2} \right) = 3\) là
lượt xem
Cho cấp số nhân (un) với u1 = 2 và u4 = 250. Công bội của cấp số cộng đã cho bằng
lượt xem
Có bao nhiêu số tự nhiên gồm ba chữ số phân biệt được lập từ các chữ số khác 0?
lượt xem
Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).
lượt xem
lượt xem
Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {m\left( {{x^2} - 2x + 3} \right) - 5m + 1} \right|\) trên đoạn [0;3] bằng 7. Tổng các phần tử của S bằng
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
lượt xem
Cho hình chóp có S.ABCD đáy ABCD là hình chữ nhật. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SA biết \(AD = a\sqrt 3 ,AB = a\). Khi đó khoảng cách từ C đến (MBD) là:
lượt xem
Cho tập hợp \(S = {\rm{\{ }}1;2;3;4;5;6\} \). Viết ngẫu nhiên lên bảng một số tự nhiên có 3 chữ số khác nhau lấy từ tập S. Xác suất để được một số chia hết cho 6 bằng
lượt xem
lượt xem
Trong không gian Oxyz, cho điểm A(2;-1;-3) và mặt phẳng (P): 3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là
lượt xem
Gọi z0 là nghiệm phức có phần ảo âm của phương trình: \({z^2} - 4z + 9 = 0\). Tìm tọa độ của điểm biểu diễn số phức \(\omega = \left( {1 + i} \right){z_0}\).
lượt xem
Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \).
lượt xem
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
lượt xem
Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
lượt xem
Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng
lượt xem
Tập nghiệm của bất phương trình \({\log ^2}_2\left( {2x} \right) - 5{\log _2}x - 5 \ge 0\) là
lượt xem
Cho hàm số \(y = {x^4} - 3{x^2} - 3\), có đồ thị hình vẽ dưới đây. Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?
.png)
lượt xem
Với a, b là các số thực dương tùy ý và a khác 1, đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào sau đây đúng?
lượt xem
Giá trị nhỏ nhất của hàm số \(f(x) = {x^3} + 3{x^2} - 9x - 7\) trên đoạn [-4;0] bằng
lượt xem
Cho hàm số y = f(x) liên tục trên R có \(f'\left( x \right) = \left( {2x - 3} \right){\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {4 - x} \right)\). Số điểm cực đại của hàm số y = f(x) là
lượt xem
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng
.png)
lượt xem
Trong không gian tọa độ Oxyz, vị trí tương đối giữa hai đường thẳng \({\Delta _1}:\frac{x}{2} = \frac{{y + 2}}{3} = \frac{z}{4}\) và \({\Delta _2}:\left\{ \begin{array}{l} x = 1 + t\\ y = 2 + t\\ z = 1 + 2t \end{array} \right.\) là
lượt xem
Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là
lượt xem
Trên không gian Oxyz, hình chiếu vuông góc của điểm A(2;5;-3) trên mặt phẳng (Oxz) có tọa độ là:
lượt xem
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?
lượt xem
Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).
lượt xem
Mô đun của số phức \(z = \left( {3 + 2i} \right)i\) là
lượt xem
Biết \(\int\limits_0^3 {f\left( x \right)dx = \frac{5}{3}} \) và \(\int\limits_0^4 {f\left( t \right)dt = \frac{3}{5}} \). Tính \(\int\limits_3^4 {f\left( u \right)du} \).
lượt xem
Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là
lượt xem
Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là
lượt xem
Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x + 1}}{{1 - 2x}}\) là
lượt xem
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.png)
lượt xem
Cho hàm số y = f(x) có bảng biến thiên như sau:
.png)
Giá trị cực tiểu của hàm số bằng
lượt xem
Diện tích xung quanh của một hình nón có độ dài đường sinh l(m), bán kính đáy \(\frac{3}{\pi }\,(m)\) là:
lượt xem
Với a là một số thực dương tùy ý, \({\log _2}\left( {8{a^3}} \right)\) bằng
lượt xem
Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
lượt xem
Gọi R là bán kính, S là diện tích mặt cầu và V là thể tích khối cầu. Công thức nào sau sai?
lượt xem
Cho khối trụ có độ dài đường sinh \(l = a\sqrt 3 \) và bán kính đáy \(r = a\sqrt 2 \). Thể tích của khối trụ đã cho bằng
lượt xem
.png)