Cho hai số thực x; y thỏa mãn \({\log _{\sqrt 3 }}({y^2} + 8y + 16) + {\log _2}\left[ {(5 - x)\left( {1 + x} \right)} \right] = 2{\log _3}\frac{{5 + 4x - {x^2}}}{3} + {\log _2}{(2y + 8)^2}\). Gọi S là tập hợp tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức \(P = \left| {\sqrt {{x^2} + {y^2}} - m} \right|\) không vượt quá 10. Hỏi S có bao nhiêu tập con khác rỗng.
A. 2047
B. 16383
C. 16384
D. 32
Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l} {\log _{\sqrt 3 }}({y^2} + 8y + 16) + {\log _2}\left[ {(5 - x)\left( {1 + x} \right)} \right] = 2{\log _3}\frac{{5 + 4x - {x^2}}}{3} + {\log _2}{(2y + 8)^2}\\ \Leftrightarrow 2{\log _3}{(y + 4)^2} + {\log _2}\left[ {5 + 4x - {x^2}} \right] = 2{\log _3}\left( {5 + 4x - {x^2}} \right) + {\log _2}{(y + 4)^2}\\ \Leftrightarrow {\log _3}{(y + 4)^2} = {\log _3}\left( {5 + 4x - {x^2}} \right) \Leftrightarrow {(y + 4)^2} = \left( {5 + 4x - {x^2}} \right)\\ \Leftrightarrow {x^2} + {y^2} - 4x + 8y + 11 = 0 \end{array}\)
Ta có \({x^2} + {y^2} + 11 = 4\left( {x - 2y} \right) \le 4\sqrt {\left( {{1^2} + {2^2}} \right)\left( {{x^2} + {y^2}} \right)} \)
\(\begin{array}{l} \Rightarrow 2\sqrt 5 - 3 \le \sqrt {{x^2} + {y^2}} \le 2\sqrt 5 + 3\\ \Rightarrow 2\sqrt 5 - 3 - m \le \sqrt {{x^2} + {y^2}} - m \le 2\sqrt 5 + 3 - m\\ \Rightarrow P = \max \left\{ {\left| {2\sqrt 5 - 3 - m} \right|;\left| {2\sqrt 5 + 3 - m} \right|} \right\} = \left| {2\sqrt 5 - m} \right| + 3 \le 10\\ \Leftrightarrow 2\sqrt 5 - 7 \le m \le 2\sqrt 5 + 7 \end{array}\)
Vậy \(S = \left\{ { \pm 2; \pm 1;0;1;2;3;4;5;6;7;8;9;10;11} \right\}\) có 14 phần tử và S có tất cả \({2^{14}} - 1 = 16383\) tập con khác rỗng.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)} \,{\rm{d}}x = 4\) và \(\int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}{\rm{d}}x} = 2\). Tính tích phân \(I = \int\limits_0^1 {f(x){\rm{d}}x} \)
Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng
Cho hàm số \(y = {x^4} - 3{x^2} - 3\), có đồ thị hình vẽ dưới đây. Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?
.png)
Trên không gian Oxyz, hình chiếu vuông góc của điểm A(2;5;-3) trên mặt phẳng (Oxz) có tọa độ là:
Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
Cho hàm số y = f(x) có bảng biến thiên như sau:
.png)
Giá trị cực tiểu của hàm số bằng
Cho hàm số y = f(x) liên tục trên R có \(f'\left( x \right) = \left( {2x - 3} \right){\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {4 - x} \right)\). Số điểm cực đại của hàm số y = f(x) là
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng
.png)
Thể tích khối chóp có đường cao bằng a và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là
Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \).
Có bao nhiêu cách chọn ra 3 học sinh từ một lớp có 20 học sinh, trong đó một bạn làm lớp trưởng, một bạn làm lớp phó, một bạn làm thủ quỹ ?
Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là?
.png)
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?
Với a, b là các số thực dương tùy ý và a khác 1, đặt \(P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}\). Mệnh đề nào sau đây đúng?


