Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).
A. \(\frac{1}{{\sqrt[3]{4}}}\)
B. \(\frac{1}{{2\sqrt[3]{2}}}\)
C. \(\frac{1}{{\sqrt[3]{2}}}\)
D. 2
Lời giải của giáo viên
ToanVN.com
Ta có: \(4{b^3} - 3b + 1 = \left( {b + 1} \right){\left( {2b - 1} \right)^2} \ge 0;\forall b \in \left( {\frac{1}{3};1} \right).\)
Suy ra: \(3b - 1 \le 4{b^3} \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) \ge {\log _a}\left( {\frac{{4{b^3}}}{{4{a^3}}}} \right),\) do \(a \in \left( {\frac{1}{3};1} \right)\).
\( \Rightarrow P \ge 3{\log _a}\left( {\frac{b}{a}} \right) + 12\log _{\frac{b}{a}}^2a = 3\left[ {\frac{1}{2}{{\log }_a}\left( {\frac{b}{a}} \right) + \frac{1}{2}{{\log }_a}\left( {\frac{b}{a}} \right) + \frac{4}{{\log _a^2\left( {\frac{b}{a}} \right)}}} \right]\) .
\( \ge 3.3\sqrt[3]{{\frac{1}{2}{{\log }_a}\left( {\frac{b}{a}} \right)\frac{1}{2}{{\log }_a}\left( {\frac{b}{a}} \right)\frac{4}{{\log _a^2\left( {\frac{b}{a}} \right)}}}} = 9\)
\({P_{\min }} = 9 \Leftrightarrow \left\{ \begin{array}{l} b = \frac{1}{2}\\ \frac{1}{2}{\log _a}\left( {\frac{b}{a}} \right) = \frac{4}{{\log _a^2\left( {\frac{b}{a}} \right)}} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} b = \frac{1}{2}\\ {\log _a}\left( {\frac{b}{a}} \right) = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} b = \frac{1}{2}\\ \frac{b}{a} = {a^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} b = \frac{1}{2}\\ a = \frac{1}{{\sqrt[3]{2}}} \end{array} \right.\)
Vậy \(\frac{b}{a} = \frac{1}{{\sqrt[3]{4}}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)} \,{\rm{d}}x = 4\) và \(\int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}{\rm{d}}x} = 2\). Tính tích phân \(I = \int\limits_0^1 {f(x){\rm{d}}x} \)
Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng
Cho hàm số \(y = {x^4} - 3{x^2} - 3\), có đồ thị hình vẽ dưới đây. Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?
.png)
Trên không gian Oxyz, hình chiếu vuông góc của điểm A(2;5;-3) trên mặt phẳng (Oxz) có tọa độ là:
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng
.png)
Cho hàm số y = f(x) có bảng biến thiên như sau:
.png)
Giá trị cực tiểu của hàm số bằng
Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
Cho hàm số y = f(x) liên tục trên R có \(f'\left( x \right) = \left( {2x - 3} \right){\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {4 - x} \right)\). Số điểm cực đại của hàm số y = f(x) là
Có bao nhiêu cách chọn ra 3 học sinh từ một lớp có 20 học sinh, trong đó một bạn làm lớp trưởng, một bạn làm lớp phó, một bạn làm thủ quỹ ?
Thể tích khối chóp có đường cao bằng a và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là
Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là?
.png)
Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \).
Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?


