Câu hỏi Đáp án 3 năm trước 50

Một hình nón bị cắt bởi mặt phẳng (P) song song với đáy. Mặt phẳng (P) chia hình nón làm hai phần (N1) và (N2). Cho hình cầu nội tiếp (N2) như hình vẽ sao cho thể tích hình cầu bằng một nửa thể tích của (N2). Một mặt phẳng đi qua trục hình nón và vuông góc với đáy cắt (N2) theo thiết diện là hình thang cân, tang góc nhọn của hình thang cân là

A. 2

Đáp án chính xác ✅

B. 4

C. 1

D. \(\sqrt3\)

Lời giải của giáo viên

verified ToanVN.com

Giả sử ta có mặt cắt của hình nón cụt và các đại lượng như hình vẽ.

Gọi \(\alpha\) là góc cần tìm.

Xét tam giác AHD vuông tại H có \(DH = h\,,\,AH = R - r \Rightarrow h = 2{r_0} = AH.tam\alpha = \left( {R - r} \right)\tan \alpha \,\left( 1 \right)\)

Thể tích khối cầu là \({V_1} = \frac{4}{3}\pi r_0^3 = \frac{{\pi {h^3}}}{6}\)

Thể tích của (N2) là \({V_2} = \frac{1}{3}\pi h\left( {{R^2} + {r^2} + Rr} \right)\)

\(\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2} \Rightarrow {h^2} = {R^2} + {r^2} + Rr\,\,\left( 2 \right)\)

Ta có BC = R + r (tính chất hai tiếp tuyến cắt nhau)

Mà \({h^2} = B{C^2} - {\left( {R - r} \right)^2} = 4Rr\,\,\left( 3 \right)\)

Từ \(\left( 2 \right)\,,\,\left( 3 \right)\, \Rightarrow {\left( {R - r} \right)^2} = Rr\,\left( 4 \right)\)

Từ \(\left( 1 \right)\,,\,\left( 3 \right)\,,\,\left( 4 \right) \Rightarrow {h^2} = {\left( {R - r} \right)^2}.{\tan ^2}\alpha = 4{\left( {R - r} \right)^2}\) (vì \(\alpha\) là góc nhọn)

\( \Rightarrow {\tan ^2}\alpha = 4 \Rightarrow \tan \alpha = 2\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số f(x) liên tục trên R thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)} \,{\rm{d}}x = 4\) và \(\int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}{\rm{d}}x} = 2\). Tính tích phân \(I = \int\limits_0^1 {f(x){\rm{d}}x} \)

Xem lời giải » 3 năm trước 72
Câu 2: Trắc nghiệm

Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng

Xem lời giải » 3 năm trước 71
Câu 3: Trắc nghiệm

Trên không gian Oxyz, hình chiếu vuông góc của điểm A(2;5;-3) trên mặt phẳng (Oxz) có tọa độ là:

Xem lời giải » 3 năm trước 69
Câu 4: Trắc nghiệm

Cho hàm số \(y = {x^4} - 3{x^2} - 3\), có đồ thị hình vẽ dưới đây. Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?

Xem lời giải » 3 năm trước 68
Câu 5: Trắc nghiệm

Nghiệm của phương trình 2x = 4 là

Xem lời giải » 3 năm trước 67
Câu 6: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như sau: 

Giá trị cực tiểu của hàm số bằng

Xem lời giải » 3 năm trước 66
Câu 7: Trắc nghiệm

Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.

Xem lời giải » 3 năm trước 66
Câu 8: Trắc nghiệm

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng

Xem lời giải » 3 năm trước 66
Câu 9: Trắc nghiệm

Cho hàm số y = f(x) liên tục trên R có \(f'\left( x \right) = \left( {2x - 3} \right){\left( {x + 1} \right)^2}{\left( {x - 2} \right)^3}\left( {4 - x} \right)\). Số điểm cực đại của hàm số y = f(x) là

Xem lời giải » 3 năm trước 65
Câu 10: Trắc nghiệm

Có bao nhiêu cách chọn ra 3 học sinh từ một lớp có 20 học sinh, trong đó một bạn làm lớp trưởng, một bạn làm lớp phó, một bạn làm thủ quỹ  ?

Xem lời giải » 3 năm trước 64
Câu 11: Trắc nghiệm

Thể tích khối chóp có đường cao bằng a và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là

Xem lời giải » 3 năm trước 64
Câu 12: Trắc nghiệm

Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \)

Xem lời giải » 3 năm trước 63
Câu 13: Trắc nghiệm

Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là? 

Xem lời giải » 3 năm trước 63
Câu 14: Trắc nghiệm

Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = -i là điểm nào dưới đây?

Xem lời giải » 3 năm trước 62

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »