Cho dãy số (un) xác định bởi \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = {u_n} + {n^3},\,\,\,\forall n \in {N^*} \end{array} \right.\). Tìm số nguyên dương n nhỏ nhất sao cho \(\sqrt {{u_n} - 1} \ge 2039190\).
lượt xem
Cho cấp số cộng (un) có u1 = 4. Tìm giá trị nhỏ nhất của \({u_1}{u_2} + {u_2}{u_3} + {u_3}{u_1}\)?
lượt xem
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Chọn khẳng định đúng?
lượt xem
Cho ba vectơ \(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Xét các vectơ \(\vec{x}=2 \vec{a}+\vec{b} ; \vec{y}=\vec{a}-\vec{b}-\vec{c} ; \vec{z}=-3 \vec{b}-2 \vec{c}\).Chọn khẳng định đúng?
lượt xem
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{A B}+\overrightarrow{B_{1} C_{1}}+\overrightarrow {D D_{1}}=k \overrightarrow {A C_{1}}\)
lượt xem
lượt xem
lượt xem
Cho hình chóp S.ABC có SA = SB = SC và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {SC} \) và \(\overrightarrow {AB} \)?
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo của góc (MN, SC) bằng:
lượt xem
Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có cạnh a. Gọi M là trung điểm AD. Giá trị \(\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} \) là:
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, Gọi H là trung điểm của AB và \(S H \perp(A B C D)\). Gọi K là trung điểm của cạnh AD . Khẳng định nào sau đây là sai?
lượt xem
Cho tứ diện ABCD . Vẽ \(A H \perp(B C D)\). Biết H là trực tâm tam giác BCD . Khẳng định nào sau đây không sai?
lượt xem
Cho hình lập phương \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\). Đường thẳng AC ' vuông góc với mặt phẳng nào sau đây?
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của 2 đường chéo và SA= SC. Các khẳng định sau, khẳng định nào đúng?
lượt xem
Cho tứ diện ABCD có \(AB \bot \left( {BCD} \right)\). Trong \(\Delta BCD\) vẽ các đường cao BE và DF cắt nhau ở O. Trong (ADC) vẽ \(DK \bot AC\) tại K. Khẳng định nào sau đây sai ?
lượt xem
Cho hình chóp S.ABC có hai mặt bên (SBC) và (SAC) vuông góc với đáy (ABC). Khẳng định nào sau đây sai ?
lượt xem
Cho hình lăng trụ ABCD.A'B'C'D'. Hình chiếu vuông góc của A' lên (ABC) trùng với trực tâm H của tam giác ABC. Khẳng định nào sau đây không đúng?
lượt xem
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và đáy ABC là tam giác cân ở A. Gọi H là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây đúng?
lượt xem
Cho hình chóp S.ABC có hai mặt bên (SBC) và (SAC) vuông góc với đáy (ABC). Khẳng định nào sau đây sai?
lượt xem
Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với đáy (ABC), tam giác ABC vuông cân ở A và có đường cao \(AH,{\rm{ }}(H \in BC)\). Gọi O là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây đúng?
lượt xem
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân ở A. H là trung điểm BC. Khẳng định nào sau đây sai ?
lượt xem
Cho hình hộp chữ nhật ABCD.A'B'C'D'. Khẳng định nào sau đây không đúng?
lượt xem
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Đường thẳng AB vuông góc với?
lượt xem
Các đường thẳng cùng vuông góc với một đường thẳng thì:
lượt xem
Cho hai đường thẳng phân biệt a,b và mặt phẳng (P), trong đó \(a \perp(P)\). Mệnh đề nào sau đây là sai?
lượt xem
Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy đường thẳng vuông góc với \(\Delta\) cho trước?
lượt xem
Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?
lượt xem
Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {EG} \)?
lượt xem
Cho tứ diện ABCD đều cạnh bằng a. Gọi M là trung điểm CD, \(\alpha\) là góc giữa AC và BM. Chọn khẳng định đúng?
lượt xem
lượt xem
Cho hình lăng trụ tam giác \(A B C \cdot A_{1} B_{1} C\). Đặt \(\overrightarrow{A A_{1}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{B C}=\vec{d}\). Trong các đẳng
thức sau, đẳng thức nào đúng?
lượt xem
Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF . Trong các khẳng định sau, khẳng định nào đúng?
lượt xem
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Trong các khẳng định sau, khẳng định nào sai?
lượt xem
Cho tứ diện ABCD . Gọi M, N lần lượt là trung điểm của AB, CD và G là trung điểm của MN . Trong các khẳng định sau, khẳng định nào sai?
lượt xem
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
lượt xem
Tam giác ABC có ba cạnh a, b, c thỏa mãn a2, b2, c2 theo thứ tự đó lập thành một cấp số cộng. Chọn khẳng định đúng trong các khẳng định sau:
lượt xem
Cho dãy số (un) xác định bởi u1 = 1 và \({u_{n + 1}} = \sqrt {u_n^2 + 2} ,\forall n \in {N^*}\). Tổng \(S = u_1^2 + u_2^2 + u_3^2 + ... + u_{1001}^2\) bằng
lượt xem
Cho (un) là cấp số cộng biết \({u_3} + {u_{13}} = 80\). Tổng 15 số hạng đầu của cấp số cộng đó bằng
lượt xem
Cho 4 số thực a, b, c, d là số hạng liên tiếp của một cấp số cộng. Biết tổng của chúng bằng 4 và tổng các bình phương của chúng bằng 24. Tính \(P = {a^3} + {b^3} + {c^3} + {d^3}\).
lượt xem
lượt xem
Người ta viết thêm 999 số thực vào giữa số 1 và số 2018 để được cấp số cộng có 1001 số hạng. Tìm số hạng thứ 501.
lượt xem
Giải phương trình 1 + 8 + 15 + 22 + ... + x = 7944
lượt xem
Cho dãy số (un) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng
lượt xem
Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng) bằng
lượt xem
lượt xem
Cho hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 1. Gọi Ak+1, Bk+1, Ck+1, Dk+1 thứ tự là trung điểm các cạnh AkBk, BkCk, CkDk, DkAk (với k = 1, 2, ... ). Chu vi của hình vuông \({A_{2018}}{B_{2018}}{C_{2018}}{D_{2018}}\) bằng
lượt xem
Cho dãy số \(\left(u_{n}\right) \text { với } u_{n}=\frac{2 n+b}{5 n+3}\)trong đó b là tham số thực. Để dãy số \((u_n)\) có giới hạn hữu hạn, giá trị của b là:
lượt xem
\(\text { Tính giới hạn } L=\lim \frac{n^{2}+n+5}{2 n^{2}+1} \text { . }\)
lượt xem
Cho dãy số \(\left(u_{n}\right) \text { vớii } u_{n}=\frac{4 n^{2}+n+2}{a n^{2}+5}\). Để dãy số đã cho có giới hạn bằng 2 , giá trị của a là:
lượt xem
\(\text { Tính giới hạn } L=\lim \frac{n^{2}-3 n^{3}}{2 n^{3}+5 n-2}\)
lượt xem
.png)