So sánh phân số

Lý thuyết về so sánh phân số. hỗn số dương môn toán lớp 6 sách kết nối tri thức với cuộc sống với nhiều dạng bài cùng phương pháp giải nhanh kèm bài tập vận dụng
(420) 1401 26/09/2022

I. Quy đồng mẫu nhiều phân số

Bước 1: Viết các phân số đã cho về phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu chung

Bước 2: Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu)

Bước 3: Nhân tử và mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng.

Ví dụ:

Để quy đồng mẫu hai phân số 1638, ta làm như sau:

- Đưa về phân số có mẫu dương: 1638

- Tìm mẫu chung: BC(6;8)=24

- Tìm thừa số phụ: 24:6=4;24:8=3

- Ta có: 16=1.46.4=42438=38=3.38.3=924.

II. Rút gọn phân số

a) Khái niệm phân số tối giản:

Phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là 11

b) Cách rút gọn phân số

Bước 1: Tìm ƯCLN của tử và mẫu khi đã bỏ dấu “-” (nếu có)

Bước 2: Chia cả tử và mẫu cho ƯCLN vừa tìm được, ta có phân số tối giản.

Ví dụ:

Để rút gọn phân số 1524 ta làm như sau:

- Tìm ƯCLN của mẫu: ƯCLN(15; 24)=3.

- Chia cả tử và mẫu cho ƯCLN: 1524=15:324:3=58.

Ta được 58 là phân số tối giản.

III. So sánh hai phân số cùng mẫu

Trong hai phân số có cùng một mẫu dương, phân số nào có tử lớn hơn thì lớn hơn.

Ví dụ: So sánh 4575.

Ta có: 4>75>0 nên 45>75.

Chú ý: Với hai phân số có cùng một mẫu nguyên âm, ta đưa chúng về hai phân số có cùng mẫu nguyên dương rồi so sánh.

Ví dụ:

So sánh 4525

Đưa hai phân số trên về có cùng một mẫu nguyên âm: 4525

Ta có: 4>25>0 nên 45>25.

IV. So sánh hai phân số khác mẫu

Bước 1: Quy đồng mẫu hai phân số đã cho (về cùng một mẫu dương)

Bước 2: So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn.

Ví dụ: So sánh hai phân số 7121118.

BCNN(12;18)=36 nên ta có:

712=7.312.3=2136

1118=11.218.2=2236.

21>22 nên 2136>2236. Do đó 712>1118.

(420) 1401 26/09/2022