Tính chất nào sau đây không phải là tính chất của phép dời hình?
A. Biến đoạn thẳng thành đoạn thẳng có độ dài gấp k lần đoạn thẳng ban đầu \(\left( {k \ne 1} \right)\).
B. Biến đường tròn thành đường tròn bằng nó.
C. Biến tam giác thành tam giác bằng nó, biến tia thành tia.
D. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự của ba điểm đó.
Lời giải của giáo viên
ToanVN.com
Phép dời hình biến đoạn thẳng thành đoạn thẳng bằng nó nên A sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x - 2y - 5 = 0. Ảnh của đường thẳng d: x - 2y - 5 = 0 qua phép quay tâm O góc \(\frac{\pi }{2}\) có phương trình là gì?
Trong mặt phẳng Oxy, tìm ảnh của đường tròn \(\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 5} \right)^2} = 5\) qua phép quay \({Q_{\left( {O,{{180}^0}} \right)}}\)
Cho tam giác ABC có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Phép vị tự nào sau đây biến tam giác ABC thành tam giác NPM?
Cho hai đường thẳng chéo nhau a và b. Lấy A,B thuộc a và C,D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\) là bao nhiêu?
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn \(\left( C \right):{x^2} + {\left( {y + 2} \right)^2} = 36\). Khi đó phép vị tự tỉ số k = 3 biến đường tròn (C) thành đường tròn (C') có bán kính là bao nhiêu?
Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để 2 học sinh nam ngồi kề nhau?
Với những giá trị nào của x thì giá trị của các hàm số tương ứng sau bằng nhau y = tan 3x và \(\tan (\dfrac{\pi }{3} - 2x)\)?
Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.
Trong mặt phẳng Oxy cho đường tròn \(\left( C \right):{x^2} + {y^2} = 4\) và đường thẳng d:x - y + 2 = 0. Gọi M là điểm thuộc đường tròn (C) sao cho khoảng cách đến d là lớn nhất. Phép vị tự tâm O tỉ số \(k = \sqrt 2 \) biến điểm M thành điểm M' có tọa độ là?
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm AB và CD. Mặt phẳng \(\left( \alpha \right)\) qua MN cắt AD và BC lần lượt tại P, Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?
