Mệnh đề nào đúng trong các mệnh đề sau?
A. Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho (khi đường thẳng không vuông góc với mặt phẳng).
B. Góc giữa đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) bằng góc giữa đường \(b\) và mặt phẳng \(\left( P \right)\) thì \(a\) song song song hoặc trùng với \(b\).
C. Góc giữa đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) bằng góc giữa đường \(a\) và mặt phẳng \(\left( Q \right)\) thì mp\(\left( P \right)\) song song với mp\(\left( Q \right)\).
D. Góc giữa đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) bằng góc giữa đường \(b\) và mặt phẳng \(\left( P \right)\) thì \(a\) song song song với \(b\).
Lời giải của giáo viên
ToanVN.com
Mệnh đề đúng là: Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho (khi đường thẳng không vuông góc với mặt phẳng).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\{u_n} = \dfrac{1}{{2 - {u_{n - 1}}}},\,\,\forall n > 1\end{array} \right.\). Giá trị của \({u_4}\) bằng:
Tính \(\mathop {\lim }\limits_{x \to {3^ + }} \dfrac{{2x + 1}}{{x - 3}}\) ta được kết quả.
Tính các giới hạn sau: \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3{x^2} + 2}}{{{x^2} - 4{\rm{x}} + 3}}\)
Trong không gian cho đường thẳng \(\Delta \) và điểm \(O\). Qua \(O\) có bao nhiêu đường thẳng vuông góc với \(\Delta \)?
Cho \(\mathop {\lim }\limits_{x \to \,{x_0}} f\left( x \right) = L;\) \(\,\mathop {\lim }\limits_{x \to \,{x_0}} g\left( x \right) = M\), với \(L,M \in \mathbb{R}\). Chọn khẳng định sai.
Cho cấp số cộng \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = - 5\) và công sai \(d = 3\). Tổng của 50 số hạng đầu tiên là:
Tính giới hạn \(\lim \dfrac{{{5^n} - {{3.4}^n}}}{{{{6.7}^n} + {8^n}}}\) ta được kết quả:
Cho đồ thị của hàm số \(f\left( x \right)\) trên khoảng \(\left( {a;\,\,b} \right)\). Biết rằng tiếp tuyến của đồ thị hàm số \(f\left( x \right)\) tại các điểm \({M_1};\,\,{M_2};\,\,{M_3}\) như hình vẽ.
Khi đó xét dấu \(f'\left( {{x_1}} \right)\,,f'\left( {{x_2}} \right)\,,f'\left( {{x_3}} \right)\).
Cho cấp số nhân \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = 2\) và công bội \(q = - 3\). Giá trị của \({u_3}\) bằng:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\). Đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = a\). Khi đó góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) có số đo là:
Cho cấp số nhân \(\left( {{v_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l}{v_2} = 2\\{v_5} = 16\end{array} \right.\). Khi đó ta có:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\). Biết rằng \(SA = SB = SC = SD\). Khẳng định nào sau đây là sai?
Tính giới hạn \(\lim \left( {\sqrt {9{n^2} + 2n} - 3n + 8} \right)\) ta được kết quả:
Tìm tất cả các giá trị của tham số \(m\) để phương trình \(\left( {2{m^2} - 5m + 2} \right){\left( {x - 1} \right)^{18}}\left( {{x^{81}} - 2} \right) + 2x + 3 = 0\) có nghiệm:
