Giả sử rằng qua phép đối xứng trục \({{\rm{D}}_a}\) ( a là trục đối xứng ), đường thẳng d biến thành đường thẳng d'. Hãy chọn câu sai trong các câu sau ?
A. Khi d song song với a thì d song song với d'.
B. d vuông góc với a thì d trùng với d'.
C. Khi d cắt a thì d cắt d'. Khi đó giao điểm của d và d' nằm trên a.
D. Khi d tạo với a một góc \({45^0}\) thì d vuông góc với d'.
Lời giải của giáo viên
ToanVN.com
Lấy \(M\left( {x;y} \right) \in (C)\) tùy ý, ta có \({x^2} + {(y - 1)^2} = 1(*)\).
Gọi \(M'\left( {x';y'} \right) = {T_{\vec v}}\left( M \right)\)
Vì \({T_{\vec v}}\left( C \right) = \left( {C'} \right) \Rightarrow M' \in \left( {C'} \right)\)
Ta có \({T_{\vec v}}\left( M \right) = M' \)
\(\Leftrightarrow \left\{ \begin{array}{l} x' = x - 3\\ y' = y - 2 \end{array} \right.\)
\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x' + 3}\\{y = y' + 2}\end{array} \Rightarrow M\left( {x' + 3;y' + 2} \right)} \right.\)
Thay vào (*) ta được \({\left( {x' + 3} \right)^2} + {\left( {y' + 1} \right)^2} = 1\)
Mà \(M'\left( {x';y'} \right) \in \left( {C'} \right)\)
Vậy phương trình đường tròn \(\left( {C'} \right):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} = 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho đa giác đều \({A_1}{A_2}...{A_{2n}}\) nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm \({A_1},{A_2},...,{A_{2n}}\) gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm \({A_1},{A_2},...,{A_{2n}}\). Tìm n?
Cho hai đường tròn tâm \(\left( {I;R} \right)\) và \(\left( {I;R'} \right)\,\,\left( {R \ne R'} \right)\). Có bao nhiêu phép vị tự biến đường tròn tâm \(\left( {I;R} \right)\) thành đường tròn \(\left( {I;R'} \right)?\)
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi \(O,{O_1}\) lần lượt là tâm của ABCD, ABEF. Lấy M là trung điểm của CD. Hỏi khẳng định nào sau đây sai ?
Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là bao nhiêu?
Cho đường thẳng d có phương trình x - y + 4 = 0. Hỏi trong các đường thẳng sau đường thẳng nào có thể biến thành d qua một phép đối xứng tâm?
Trong mặt phẳng với hệ trục tọa độ Oxy cho A ( -2;-3), B ( 4;1). Phép đồng dạng có tỉ số \(k = {1 \over 2}\) biến điểm A thành A', biến điểm B thành B'. Khi đó độ dài A'B' bằng bao nhiêu?
Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).
Một hội nghị bàn tròn có các phái đoàn gồm 3 người Anh, 5 người Pháp, 7 người Mỹ. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên, sao cho những người có cùng quốc tịch thì ngồi gần nhau?
Với \(\dfrac{{\left( {n + 1} \right)!}}{{\left( {n - 1} \right)!}} = 72\) thì giá trị của n là bao nhiêu?
Trong mặt phẳng với hệ trục tọa độ Oxy. Cho hai đường tròn (C), (C') trong đó (C') có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\). Gọi V là phép vị tự tâm I (1;0) tỉ số k = 3 biến đường tròn (C) thành (C'). Khi đó phương trình của (C) là phương trình nào dưới đây?
Trong mặt phẳng Oxy, phép tịnh tiến theo vectơ \(\vec v = (1;3)\) biến điểm A (1;2) thành điểm nào trong các điểm sau đây ?
Cho M ( 3;4) . Tìm ảnh của điểm M qua phép quay tâm O góc quay \({30^0}\).
Tìm tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\).
