Đội thanh niên xung kích của một trường phổ thông có 12 học sinh gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này không thuộc quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy:
A. 4123
B. 3452
C. 225
D. 446
Lời giải của giáo viên
ToanVN.com
Gọi A là tập hợp cách chọn 4 học sinh trong 12 học sinh.
Gọi B là tập hợp cách chọn 4 số học sinh mà mỗi lớp có ít nhất một em.
Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài.
Khi đó \(A = B \cup C;B \cap C = \emptyset .\)
Theo quy tắc cộng ta có: \(n\left( A \right) = n\left( B \right) + n\left( C \right) \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right)\)
Ta có \(n\left( A \right) = C_{12}^4 = 495\)
Để tính n(B), ta nhận thấy sẽ chọn mỗi lớp 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh.
Vì thế theo quy tắc cộng và phép nhân, ta có
\(n\left( B \right) \)\(= C_5^2C_4^1C_3^1 + C_5^1C_4^2C_3^1 + C_5^1C_4^1C_3^2 \)
\(= 120 + 90 + 60 = 270\)
\( \Rightarrow n\left( C \right) = n\left( A \right) - n\left( B \right) = 495 - 270 = 225\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để phương trình \(\dfrac{{\cos x + 2\sin x + 3}}{{2\cos x - \sin x + 4}} = m\) có nghiệm.
Cho lục giác đều ABCDEF như hình vẽ.

Phép quay tâm O góc \({120^0}\) biến tam giác AOE thành tam giác nào?
Cho tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\) Hỏi có thể lập được bao nhiêu chữ số có 4 chữ số khác nhau và chia hết cho 3.
Tìm tập xác định của hàm số \(y = f(x) = 2\cot (2x - \dfrac{\pi }{3}) + 1\).
Cho các chữ số 1, 2, 3, …,9. Từ các số đó có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.
Cho \(\Delta ABC\) có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Phép vị tự nào sau đây biến \(\Delta ABC\) thành \(\Delta NPM\)?
Với những giá trị nào của \(x\) thì giá trị của các hàm số tương ứng sau bằng nhau \(y = \tan 3x\) và \(\tan (\dfrac{\pi }{3} - 2x)\)
Tìm nghiệm dương bé nhất của phương trình \(2{\sin ^2}x + 5\sin x - 3 = 0\).
Hàm số nào sau đây có đồ thị không là đường hình sin?
Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận sân nhà và 2 trận sân khách. Số trận đấu được sắp xếp là:
Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để 2 học sinh nam ngồi kề nhau:
Cho lục giác đều ABCDEF tâm O. Ảnh của tam giác COD qua phép tịnh tiến theo véctơ \(\overrightarrow {BA} \) là: