Lời giải của giáo viên
ToanVN.com
Ta có \(IF\) là đường trung bình của tam giác \(ACD\); \(JE\) là đường trung bình của tam giác \(BCD\).
\(\begin{array}{l} \Rightarrow IF//CD;\,\,JE//CD;\,\,IF = \dfrac{1}{2}CD;\,\,JE = \dfrac{1}{2}CD\\ \Rightarrow IF//JE;\,\,IF = JE\end{array}\)
\( \Rightarrow IJEF\) là hình bình hành (Tứ giác có cặp cạnh đối song song bằng nhau).
\(IJ\) là đường trung bình của tam giác \(ABC\) \( \Rightarrow IJ = \dfrac{1}{2}AB = \dfrac{1}{2}CD = IF\).
\(IJ//AB;\,\,IF//CD;\,\,AB \bot CD \Rightarrow IJ \bot IF\).
\( \Rightarrow IJEF\) là hình vuông \( \Rightarrow \angle \left( {IE;IF} \right) = {45^0}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Tính \(\lim \dfrac{{7{x^3} - 3{x^5} - 11}}{{{x^5} + {x^3} - 3x}}\) bằng:
Tìm giá trị của tham số \(a\) để hàm số sau liên tục tại \({x_0} = 1\)\(f(x) = \left\{ \begin{array}{l}\dfrac{{5{x^3} - 4x - 1}}{{{x^2} - 1}} & khi\,\,x > 1\\4ax + 5\,\,\,\, & khi\,\,x \le 1\end{array} \right.\).
\(\mathop {\lim }\limits_{x \to 3} \left( {\dfrac{{3{x^2}}}{{x - 3}}.\dfrac{{12x + 4}}{{2{x^3} - 6{x^2} + x - 3}}} \right)\) bằng:
Cho cấp số cộng biết tổng 10 số hạng đầu bằng 85 và số hạng thứ 5 bằng 7. Tìm số hạng thứ 100.
Tính: \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^3} + 2{x^2} - 5x - 6}}{{{x^2} - 2x - 3}}\).
Tính: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} - 3x}}{{x - 2}}\).
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - 2;2} \right)\); \(f\left( 1 \right) = 0\) và \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 0\). Tìm khẳng định sai?
Cho hàm số \(y = 2{x^3} - 3x - 1\) có đồ thị là \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) vuông góc với đường thẳng \(x + 21y - 2 = 0\) có phương trình là:
Giải phương trình: \(y = \sqrt {7{x^2} + 8x + 5} \).
Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) cạnh \(a\), \(\angle BAD = {60^0}\) và \(SA = SB = SD = \dfrac{{a\sqrt 3 }}{2}\). Khoảng cách từ \(S\) đến \(\left( {ABCD} \right)\) và độ dài \(SC\) theo thứ tự là:
Trong bốn giới hạn sau đây, giới hạn nào là \( - 1\)?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) có \(AB = a,\,\,AD = 2a,\,\,SA\) vuông góc với đáy và \(SA = a\). Gọi \(\left( P \right)\) là mặt phẳng qua \(SO\) và vuông góc với \(\left( {SAD} \right)\). Diện tích thiết diện của \(\left( P \right)\) và hình chóp \(S.ABCD\) bằng:
Trong các hàm số sau, hàm số nào không liên tục tại \(x = 0\)?
Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {{x^2} + 3} - 3x + 1}}{{{x^2} - 1}}\).
Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\) cạnh bằng \(a\) và các cạnh bên đều bằng \(a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AD\) và \(SD\). Số đo của góc \(\left( {MN;SC} \right)\) bằng:
