Lời giải của giáo viên
ToanVN.com
Gọi (P) là mặt phẳng đi qua A' và vuông góc với BC.
Từ A' ta dựng \(A'K' \bot B'C'\),
Vì \((ABC) \bot (BCC'B')\) nên \(A'K' \bot B'C' \Rightarrow A'K' \bot (BCC'B') \Rightarrow A'K' \bot BC'\) (1)
Mặt khác trong mặt phẳng (BCC'B') dựng \(K'x \bot B'C\) và cắt B'B tại 1 điểm N (2) (điểm gì đề chưa có cho nên cho tạm điểm N).
Từ (1) và (2) ta có : \(\left\{ \begin{array}{l} BC' \bot A'K'\\ BC' \bot K'N \end{array} \right. \Rightarrow BC' \bot (A'K'N)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S ABC . có cạnh \(S A \perp(A B C)\) và đáy ABC là tam giác cân ở C . Gọi H và K lần lượt là trung điểm của AB và SB . Khẳng định nào sau đây có thể sai ?
Cho cấp số nhân (un), biết \({u_1} = 1;{u_4} = 64\). Tính công bội q của cấp số nhân.
Cho hàm số \(f(x)=\left\{\begin{array}{ll} \frac{x+1+\sqrt[3]{x-1}}{x} & \text { khi } x \neq 0 \\ 2 & \text { khi } x=0 \end{array}\right.\). Khẳng định nào sau đây đúng nhất?
\(\text { Biết rằng } \lim \frac{n+\sqrt{n^{2}+1}}{\sqrt{n^{2}-n}-2}=a \sin \frac{\pi}{4}+b . \text { Tính } S=a^{3}+b^{3}\)
Tính tổng tất cả các số hạng của một cấp số nhân có số hạng đầu là \(\frac{1}{2}\), số hạng thứ tư là 32 và số hạng cuối là 2048?
Cho hàm số \(f(x)=\left\{\begin{array}{ll} \frac{\sqrt[3]{x}-1}{x-1} & \text { khi } x \neq 1 \\ \frac{1}{3} & \text { khi } x=1 \end{array}\right.\) . Khẳng định nào sau đây đúng nhất?
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = b, CC' = c. Độ dài đường chéo AC' là
Chọn giá trị f (0) để các hàm số \(f(x)=\frac{\sqrt{2 x+1}-1}{x(x+1)}\) liên tục tại điểm x=0
Cho tứ diện ABCD . Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{M N}=k(\overrightarrow{A D}+\overrightarrow{B C})\)
Tìm x, y biết các số \(x+5 y, 5 x+2 y, 8 x+y\) lập thành cấp số cộng và các số \((y-1)^{2}, x y-1,(x+1)^{2}\) lập thành cấp số nhân.
Tính giới hạn \(A=\lim\limits _{x \rightarrow 0} \frac{1-\cos a x}{x^{2}}:\)
Số hạng đầu tiên của cấp số cộng dương (un) thoả mãn :
\(\left\{ {\begin{array}{*{20}{l}}
{{u_7} - {u_3} = 8}\\
{{u_2}{u_7} = 75}
\end{array}} \right.\)
Kết quả của giới hạn \(\lim \frac{\sqrt{2 n+3}}{\sqrt{2 n}+5}\) là?
Cho tứ diện ABCD . Gọi M và P lần lượt là trung điểm của AB và CD . Đặt \(\overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{A D}=\vec{d}\). Khẳng định nào sau đây đúng?
Kết quả của giới hạn \(\lim \frac{-n^{2}+2 n+1}{\sqrt{3 n^{4}+2}}\) là?
.png)
