Lời giải của giáo viên
ToanVN.com
Xét hai tam giác \(\Delta SAD,\,\Delta SAB\,\) có SA chung, AD = AB và \(\widehat {SAD} = \widehat {SAB} = {90^0}\,\,(SA \bot (ABCD))\) nên \(\Delta SAD = \Delta SAB\,\,\, \Rightarrow SD = SB\). Do đó, \(\Delta SBD\) cân tại S.
Lại có O là giao điểm của hai đường chéo trong hình vuông ABCD nên O là trung điểm của DB.
Suy ra tam giác SBD có \(SO \bot BD\,\,\, \Rightarrow \,\,\Delta SOD\) vuông tại O.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lập phương ABCD.A’B’C’D’. Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\) là
Tìm giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} - x} \right)\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{2{x^2} - 5x + 2}}{{{x^3} - 8}}\)
Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{5a{x^2} + 3x + 2a + 1}\\{1 + x + \sqrt {{x^2} + x + 2} }\end{array}} \right.\,\,\,\,\begin{array}{*{20}{c}}{khi}\\{khi}\end{array}\,\,\,\begin{array}{*{20}{c}}{x \ge 0}\\{x < 0}\end{array}\)có giới hạn khi \(x \to 0\)
Cho hình chóp S. ABC có đáy ABC là tam giác cân tại A, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là trung điểm BM. Khẳng định nào sau đây đúng ?
Giá trị của \(\lim (\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}})\) bằng
Cho cấp số nhân \({u_n} = \dfrac{1}{{{2^n}}},\forall n \ge 1\). Khi đó:
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}}\)
Giá trị của \(\lim \dfrac{{4{n^2} + 3n + 1}}{{{{(3n - 1)}^2}}}\) bằng
Cho hình hộp MNPQ.M’N’P’Q’. Mệnh đề nào sau đây là mệnh đề đúng?
