Cho hình chóp \(S.ABCD\) có đáy là hình vuông \(ABCD\), \(SA \bot \left( {ABCD} \right)\) và \(SA = AB\). Gọi \(E,\,F\)lần lượt là trung điểm của \(BC,\,\,SC\). Góc giữa \(EF\) và mặt phẳng \(\left( {SAD} \right)\) bằng:
A. \({45^0}\)
B. \({30^0}\)
C. \({60^0}\)
D. \({90^0}\)
Lời giải của giáo viên
ToanVN.com
Vì \(EF\) là đường trung bình của tam giác \(SBC\) nên \(EF//SB\), khi đó ta có \(\angle \left( {EF;\left( {SAD} \right)} \right) = \angle \left( {SB;\left( {SAD} \right)} \right)\).
Ta có: \(\left\{ \begin{array}{l}AB \bot AD\\AB \bot SA\end{array} \right. \Rightarrow AB \bot \left( {SAD} \right)\), do đó \(SA\) là hình chiếu vuông góc của \(SB\) lên \(\left( {SAD} \right)\).
\( \Rightarrow \angle \left( {SB;\left( {SAD} \right)} \right) = \angle \left( {SB;SA} \right) = \angle ASB\).
Ta có: \(\left\{ \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\\SA = AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow \Delta SAB\) vuông cân tại \(A \Rightarrow \angle ASB = {45^0}\).
Vậy \(\angle \left( {EF;\left( {SAD} \right)} \right) = {45^0}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_2} = 8;\,\,{u_5} = 17\). Công sai \(d\) bằng:
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và \(AB \bot BC\). Hình chóp \(S.ABC\) có bao nhiêu mặt là tam giác vuông?
Cho hình lập phương \(ABCD.A'B'C'D'\). Góc giữa hai đường thẳng \(AC\) và \(DA'\) bằng:
Cho hai đường thẳng \(a,\,\,b\) phân biệt và mặt phẳng \(\left( P \right)\). Mệnh đề nào sau đây sai ?
Trong không gian cho ba đường thẳng phân biệt \(a,\,b,\,c.\)Khẳng định nào sau đây đúng?
Hàm số \(f\left( x \right) = \dfrac{{2x + 3}}{{\sqrt {x - 2} }}\) liên tục trên khoảng nào sau đây?
Có bao nhiêu giá trị nguyên của tham số thực \(m\) để \(I < 12\) biết \(I = \mathop {\lim }\limits_{x \to - 1} \left( {{x^4} - 2mx + {m^2} + 3} \right)\)
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 81\) và \({u_2} = 27\). Tìm công bội \(q\)?
Cho phương trình \({x^3} - 3{x^2} + 3 = 0\). Khẳng định nào sau đây đúng ?
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 11;\,\,\,{u_2} = 13\). Tính tổng \(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + .... + \dfrac{1}{{{u_{99}}{u_{100}}}}\).
Cho hàm số \(f\left( x \right) = \dfrac{{2x + 3}}{{x - 2}}\). Mệnh đề nào sau đây đúng ?
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\); tam giác \(ABC\) đều cạnh \(a\) và \(SA = a\). Tìm góc giữa \(SC\) và mặt phẳng \(\left( {ABC} \right)\).
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 19\) và \(d = - 2\). Tìm số hạng tổng quát \({u_n}\).
