Cho hình chóp \(S.ABCD\) có đáy là hình thang \(ABCD\) \(\left( {AD// BC} \right)\). Gọi \(I\) là giao điểm của \(AB\) và \(DC\), \(M\) là trung điểm \(SC\). \(DM\) cắt mặt phẳng \(\left( {SAB} \right)\) tại \(J\). Khẳng định nào sau đây sai?
A. \(S\), \(I\),\(J\) thẳng hàng.
B. \(DM \subset mp\left( {SCI} \right)\).
C. \(JM \subset mp\left( {SAB} \right)\).
D. \(SI = \left( {SAB} \right) \cap \left( {SCD} \right)\).
Lời giải của giáo viên
ToanVN.com
.jpg)
+) \(\left\{ \begin{array}{l}AB \cap CD = \left\{ I \right\}\\SA \cap SD = \left\{ S \right\}\end{array} \right. \Rightarrow \left( {SAB} \right) \cap \left( {SCD} \right) = SI\)
Mà \(MD \cap \left( {SAB} \right) = \left\{ J \right\}\)
Suy ra \(J \in SI\) nên A đúng.
+) \(M \in SC \Rightarrow M \in \left( {SCI} \right)\) nên \(DM \subset mp\left( {SCI} \right)\) vậy B đúng.
+) \(M \notin \left( {SAB} \right)\)nên \(JM \not\subset mp\left( {SAB} \right)\) vậy C sai.
+) Hiển nhiên D đúng theo giải thích A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x) = \dfrac{{{x^2} + 1}}{{{x^2}-5x + 6}}\) . Hàm số liên tục trên khoảng nào sau đây?
Tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM = 2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Khẳng định nào sau đây là đúng?
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Kết quả nào sau đây là đúng?
Tính \(\mathop {\lim }\limits_{x \to + \infty } (x + 2)\sqrt {\dfrac{{x - 1}}{{{x^4} + {x^2} + 1}}} \)
Cho dãy số \(({u_n})\)có \({u_1} = \dfrac{1}{4};d = \dfrac{{ - 1}}{4}\). Khẳng định nào sau đây đúng ?
Chọn đáp án đúng: Với là các hằng số và nguyên dương thì:
Xét xem dãy số \(({u_n})\)với \({u_n} = 3n - 1\) có phải là cấp số nhân không? Nếu phải hãy xác định công bội.
Cho biết \(\mathop {\lim }\limits_{x \to - 2} \dfrac{{4{x^3} - 1}}{{3{x^2} + x + 2}}\) bằng
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{2{x^2} - 5x + 2}}{{{x^3} - 8}}\)
Cho cấp số cộng \(({u_n})\)có \({u_2} + {u_3} = 20,{u_5} + {u_7} = - 29\). Tìm \({u_1},d\)?
Cho cấp số nhân \({u_n} = \dfrac{1}{{{2^n}}},\forall n \ge 1\). Khi đó:
Cho hình chóp \(S.ABCD\), đáy là hình thang, đáy lớn \(AB\), Gọi \(O\) là giao của \(AC\) với \(BD\). \(M\) là trung điểm \(SC\). Giao điểm của đường thẳng \(AM\) và \(mp\left( {SBD} \right)\) là:
