Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{{x^2} - 3x + 2}}{{\sqrt {x - 1} }} + 2\,\,\,,\,x > 1}\\{3{x^2} + x - 1\,\,\,\,\,,x \le 1}\end{array}} \right.\,\,\). Khẳng định nào sau đây đúng nhất.
A. Hàm số liên tục tại x = 1
B. Hàm số liên tục tại mọi điểm
C. Hàm số không liên tục tại x = 1
D. Tất cả đều sai
Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\dfrac{{{x^2} - 3x + 2}}{{\sqrt {x - 1} }} + 2} \right)\\ = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{{x^2} - 3x + 2}}{{\sqrt {x - 1} }} + \mathop {\lim }\limits_{x \to {1^ + }} 2\\ = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\sqrt {x - 1} }} + \mathop {\lim }\limits_{x \to {1^ + }} 2\\ = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1} \left( {x + 2} \right) + \mathop {\lim }\limits_{x \to {1^ + }} 2\\ = 0 + 2 = 2\end{array}\)
\(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {3{x^2} + x - 1} \right) = 3 + 1 - 1 = 3\)
\(f(1) = {3.1^2} + 1 - 1 = 3\)
Ta có \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1)\)nên hàm số gián đoạn tại x=1
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lập phương ABCD.A’B’C’D’. Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
Tìm giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} - x} \right)\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{2{x^2} - 5x + 2}}{{{x^3} - 8}}\)
Cho dãy số \(({u_n})\) với \({u_n} = (n - 1)\sqrt {\dfrac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của \(\lim {u_n}\) là
Cho hình chóp S. ABC có đáy ABC là tam giác cân tại A, cạnh bên SA vuông góc với đáy, M là trung điểm BC, J là trung điểm BM. Khẳng định nào sau đây đúng ?
Giá trị của \(\lim (\sqrt {{n^2} + 2n} - \sqrt[3]{{{n^3} + 2{n^2}}})\) bằng
Cho cấp số nhân \({u_n} = \dfrac{1}{{{2^n}}},\forall n \ge 1\). Khi đó:
Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{5a{x^2} + 3x + 2a + 1}\\{1 + x + \sqrt {{x^2} + x + 2} }\end{array}} \right.\,\,\,\,\begin{array}{*{20}{c}}{khi}\\{khi}\end{array}\,\,\,\begin{array}{*{20}{c}}{x \ge 0}\\{x < 0}\end{array}\)có giới hạn khi \(x \to 0\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}}\)
Giá trị của \(\lim \dfrac{{4{n^2} + 3n + 1}}{{{{(3n - 1)}^2}}}\) bằng
Cho hình hộp MNPQ.M’N’P’Q’. Mệnh đề nào sau đây là mệnh đề đúng?
