Cho giới hạn \(I = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{4{x^2} + 3x + 2}}{{{x^2} + x - 2}}\). Khẳng định nào sau đây đúng
A. \(I \in \left( {3;5} \right)\)
B. \(I \in \left( {2;3} \right)\)
C. \(I \in \left( {5;6} \right)\)
D. \(I \in \left( {1;2} \right)\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \dfrac{{4{x^2} + 3x + 2}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{4 + \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}}{{1 + \dfrac{1}{x} - \dfrac{2}{{{x^2}}}}} = 4\).
Vậy \(I = 4 \in \left( {3;5} \right)\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_2} = 8;\,\,{u_5} = 17\). Công sai \(d\) bằng:
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và \(AB \bot BC\). Hình chóp \(S.ABC\) có bao nhiêu mặt là tam giác vuông?
Cho hình lập phương \(ABCD.A'B'C'D'\). Góc giữa hai đường thẳng \(AC\) và \(DA'\) bằng:
Trong không gian cho ba đường thẳng phân biệt \(a,\,b,\,c.\)Khẳng định nào sau đây đúng?
Cho hai đường thẳng \(a,\,\,b\) phân biệt và mặt phẳng \(\left( P \right)\). Mệnh đề nào sau đây sai ?
Có bao nhiêu giá trị nguyên của tham số thực \(m\) để \(I < 12\) biết \(I = \mathop {\lim }\limits_{x \to - 1} \left( {{x^4} - 2mx + {m^2} + 3} \right)\)
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 81\) và \({u_2} = 27\). Tìm công bội \(q\)?
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 11;\,\,\,{u_2} = 13\). Tính tổng \(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + .... + \dfrac{1}{{{u_{99}}{u_{100}}}}\).
Cho hàm số \(f\left( x \right) = \dfrac{{2x + 3}}{{x - 2}}\). Mệnh đề nào sau đây đúng ?
Hàm số \(f\left( x \right) = \dfrac{{2x + 3}}{{\sqrt {x - 2} }}\) liên tục trên khoảng nào sau đây?
Cho hình lập phương \(ABCD.A'B'C'D'\) . Chọn mệnh đề đúng?
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 19\) và \(d = - 2\). Tìm số hạng tổng quát \({u_n}\).
Cho phương trình \({x^3} - 3{x^2} + 3 = 0\). Khẳng định nào sau đây đúng ?
