Có bao nhiêu cách chọn một học sinh từ một nhóm gồm 5 học sinh nam và 7 học sinh nữ là
lượt xem
Cho cấp số cộng (un) với u1 = 8 và công sai d = 3. Giá trị của u2 bằng
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 4\). Tâm của (S) có tọa độ là
lượt xem
Cho khối chóp có diện tích đáy \(B = 2{a^2}\) và chiều cao h = 9a. Thể tích của khối chóp đã cho bằng
lượt xem
Phần thực của số phức z = - 5 - 4i bằng
lượt xem
Cho khối lăng trụ có diện tích đáy B = 6, và chiều cao h = 3. Thể tích của khối lăng trụ đã cho bằng
lượt xem
Với a là số thực dương tùy ý, \({\log _2}2a\) bằng
lượt xem
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng
lượt xem
lượt xem
Trong không gian Oxyz, biết mặt cầu \(\left( S \right)\) tâm O và tiếp xúc với mặt phẳng \(\left( P \right):x - 2y + 2z + 9 = 0\) tại điểm \(H\left( {a;b;c} \right)\). Giá trị tổng \(a + b + c\) bằng
lượt xem
Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất là
lượt xem
lượt xem
lượt xem
lượt xem
Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.
lượt xem
lượt xem
Cho số phức z có |z| = 2 thì số phức w = z + 3i có modun nhỏ nhất và lớn nhất lần lượt là:
lượt xem
Cho hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) thỏa mãn c > 2019, a + b + c - 2018 < 0. Số điểm cực trị của hàm số \(y = \left| {f(x) - 2019} \right|\) là
lượt xem
lượt xem
lượt xem
Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).
lượt xem
lượt xem
Cho hàm số y = f(x) có đạo hàm liên tục trên R thỏa mãn \(f'\left( x \right) - xf\left( x \right) = 0,f\left( x \right) > 0,\forall x \in R\) và f(0) = 1. Giá trị của f(1) bằng?
lượt xem
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình chữ nhật \(AB=a,AD=a\sqrt{2},SA\bot \left( ABCD \right)\) và SA=a (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng \(\left( SBD \right)\) bằng:
.png)
lượt xem
Tìm số giá trị nguyên thuộc đoạn \(\left[ { - 2021\,;2021} \right]\) của tham số m để đồ thị hàm số \(y = \frac{{\sqrt {x - 3} }}{{{x^2} + x - m}}\) có đúng hai đường tiệm cận.
lượt xem
Tìm tập tất cả các giá trị của m để hàm số \(y = {x^3} + \left( {3m - 1} \right){x^2} + {m^2}x - 3\) đạt cực tiểu tại x = -1.
lượt xem
lượt xem
Họ nguyên hàm của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 3{\rm{x}} + 2}}\) là:
lượt xem
Trong không gian Oxyz, cho mặt phẳng \((\alpha ):x+2y+3z-6=0\) và đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y+1}{-1}=\frac{z-3}{1}\). Mệnh đề nào sau đây đúng ?
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\) và mặt phẳng \(\left( P \right):x+2y+2z-12=0\). Tính bán kính đường tròn giao tuyến của \(\left( S \right)\) và \(\left( P \right)\).
lượt xem
lượt xem
Cho hình thang ABCD vuông tại A và D, AD = CD = a, AB = 2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
lượt xem
Nguyên hàm của hàm số \(y = \frac{1}{{1 - x}}\) là:
lượt xem
Trong hình dưới đây, điểm B là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
lượt xem
Nếu hình lập phương ABCD.A'B'C'D' có AB = 2 thì thể tích của khối tứ diện A'B'C'D' bằng
lượt xem
Cho hai số phức z1 = 1 + i và z2 = 2 - 3i. Tính mô đun của số phức z1 + z2
lượt xem
Trong không gian Oxyz, mặt cầu có tâm I(2;-1;1) và tiếp xúc mặt phẳng (Oyz) có phương trình là:
lượt xem
Tìm các số thực a và b thỏa mãn 2a + (b + i)i = 1 + 2i với i là đơn vị ảo.
lượt xem
Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?
lượt xem
Cho hình chóp tam giác S.ABC có SA vuông góc với mặt phẳng \(\left( {ABC} \right),SA = \sqrt 3 .\) Tam giác ABC đều, cạnh a. Góc giữa SC và mặt phẳng (ABC) bằng:
.png)
lượt xem
Cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \(\left( \alpha \right):4x + 3y - 7z + 1 = 0\). Phương trình chính tắc của d là
lượt xem
Thể tích khối tứ diện đều có cạnh bằng 2.
lượt xem
Một trong bốn hàm số cho trong các phương án A, B, c, D sau đây có đồ thị như hình vẽ
Hỏi hàm số đó là hàm số nào?
lượt xem
Cho biểu thức \(P=\sqrt[4]{{{x}^{5}}}\) với \(x>0\). Mệnh đề nào sau đây đúng?
lượt xem
Phần ảo của số phức \(z = - 1 + i\) là
lượt xem
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng
lượt xem
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) là
lượt xem
Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là
lượt xem
Nghiệm của phương trình 2x-3 = \(\frac12\) là
lượt xem
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là
lượt xem