Một lớp có 36 chiếc ghế đơn được xếp thành hình vuông 6 x 6. Giáo viên muốn xếp 36 học sinh của lớp, trong đó có em Kỷ và Hợi ngồi vào số ghế trên, mỗi học sinh ngồi một ghế. Xác suất để hai em Kỷ và Hợi ngồi cạnh nhau theo hàng dọc hoặc hàng ngang là
A. \(\frac{1}{{21}}\)
B. \(\frac{1}{{7}}\)
C. \(\frac{4}{{21}}\)
D. \(\frac{2}{{21}}\)
Lời giải của giáo viên
ToanVN.com
Xếp 36 em học sinh vào 36 ghế ⇒ Không gian mẫu
Gọi A là biến cố: “Hai em Kỷ và Hợi ngồi cạnh nhau theo một hàng ngang hoặc một hàng dọc”.
Chọn 1 hàng hoặc cột để xếp Kỷ và Hợi có 12 cách.
Trên mỗi hàng hoặc cột xếp 2 em Kỷ và Hợi gần nhau có 5.2 = 10 cách.
Sắp xếp 34 bạn còn lại có 34! cách.
\( \Rightarrow n\left( A \right) = 12.10.34!.\)
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12.10.34!}}{{36!}} = \frac{2}{{21}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng
Cho không gian Oxyz, cho điểm A(0;1;2) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 2t\\ z = 2 + t \end{array} \right.\), \({d_2}:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({d_1},{d_2}\).
Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).
Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.
Trong không gian Oxyz cho điểm M(1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) thỏa mãn OA = 2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S = 2a + b + 3c.
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 2\) và \({u_2} = 8\). Công sai của cấp số cộng bằng
Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?
Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây
Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có 6 nghiệm phân biệt
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình chữ nhật \(AB=a,AD=a\sqrt{2},SA\bot \left( ABCD \right)\) và SA=a (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng \(\left( SBD \right)\) bằng:
.png)
Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là
Trong không gian Oxyz, mặt cầu có tâm I(2;-1;1) và tiếp xúc mặt phẳng (Oyz) có phương trình là:
Cho hai số thực x,y thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với a,b là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính a+b.


