Câu hỏi Đáp án 3 năm trước 51

Tìm tập tất cả các giá trị của m để hàm số \(y = {x^3} + \left( {3m - 1} \right){x^2} + {m^2}x - 3\) đạt cực tiểu tại x = -1.

A. {5;1}

B. {5}

Đáp án chính xác ✅

C. Ø

D. {1}

Lời giải của giáo viên

verified ToanVN.com

\(y' = 3{x^2} + 2\left( {3m - 1} \right)x + {m^2};\,\,y'' = 6x + 2\left( {3m - 1} \right)\)

Xét phương trình \(y'\left( { - 1} \right) = 0 \Leftrightarrow 3{\left( { - 1} \right)^2} - 2\left( {3m - 1} \right) + {m^2} = 0 \Leftrightarrow {m^2} - 6m + 5 = 0 \Leftrightarrow \left[ \begin{array}{l} m = 1\\ m = 5 \end{array} \right.\)

Với \(m = 1 \Rightarrow y'' = 6x + 4 \Rightarrow y''\left( { - 1} \right) =  - 2 < 0\) nên hàm số đạt cực đại tại x = -1

Với \(m = 5 \Rightarrow y'' = 6x + 28 \Rightarrow y''\left( { - 1} \right) = 22 > 0\) nên hàm số đạt cực tiểu tại x = -1

Vậy m = 5 thỏa mãn yêu cầu bài toán.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là

Xem lời giải » 3 năm trước 79
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng

Xem lời giải » 3 năm trước 76
Câu 3: Trắc nghiệm

Cho không gian Oxyz, cho điểm A(0;1;2) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 2t\\ z = 2 + t \end{array} \right.\), \({d_2}:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua A và song song với hai đường thẳng \({d_1},{d_2}\).

Xem lời giải » 3 năm trước 72
Câu 4: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Xem lời giải » 3 năm trước 72
Câu 5: Trắc nghiệm

Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.

Xem lời giải » 3 năm trước 71
Câu 6: Trắc nghiệm

Trong không gian Oxyz cho điểm M(1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) thỏa mãn OA = 2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S = 2a + b + 3c.

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?

Xem lời giải » 3 năm trước 65
Câu 8: Trắc nghiệm

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 2\) và \({u_2} = 8\). Công sai của cấp số cộng bằng

Xem lời giải » 3 năm trước 64
Câu 9: Trắc nghiệm

Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây

Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có 6 nghiệm phân biệt

Xem lời giải » 3 năm trước 64
Câu 10: Trắc nghiệm

Nghiệm của phương trình 2x-3 = \(\frac12\) là

Xem lời giải » 3 năm trước 63
Câu 11: Trắc nghiệm

Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình chữ nhật \(AB=a,AD=a\sqrt{2},SA\bot \left( ABCD \right)\) và SA=a (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng \(\left( SBD \right)\) bằng:

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là

Xem lời giải » 3 năm trước 61
Câu 14: Trắc nghiệm

Trong không gian Oxyz, mặt cầu có tâm I(2;-1;1) và tiếp xúc mặt phẳng (Oyz) có phương trình là:

Xem lời giải » 3 năm trước 61
Câu 15: Trắc nghiệm

Cho hai số thực x,y thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với a,b là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính a+b.

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »