Câu hỏi Đáp án 3 năm trước 42

Cho hình lăng trụ \(ABC.{A}'{B}'{C}'\) và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và \(\frac{CM}{CA}=k\). Mặt phẳng \(\left( MN{B}'{A}' \right)\) chia khối lăng trụ \(ABC.{A}'{B}'{C}'\) thành hai phần có thể tích \({{V}_{1}}\) (phần chứa điểm C) và \({{V}_{2}}\) sao cho \(\frac{{{V}_{1}}}{{{V}_{2}}}=2\). Khi đó giá trị của k là

A. \(k = \frac{{ - 1 + \sqrt 5 }}{2}\)

Đáp án chính xác ✅

B. \(k = \frac{1}{2}\)

C. \(k = \frac{{1 + \sqrt 5 }}{2}\)

D. \(k = \frac{{\sqrt 3 }}{3}\)

Lời giải của giáo viên

verified ToanVN.com

+ Vì ba mặt phẳng \((MN{B}'{A}').(AC{C}'{A}'),(BC{C}'{B}')\) đôi một cắt nhau theo ba giao tuyến phân biệt \({A}'M,{B}'N,C{C}'\) và \({A}'M,C{C}'\) không song song nên \({A}'M,{B}'N,C{C}'\) đồng qui tại S.

Ta có \(k=\frac{CM}{CA}=\frac{MN}{AB}=\frac{MN}{{A}'{B}'}=\frac{SM}{S{A}'}=\frac{SN}{S{B}'}=\frac{SC}{S{C}'}\)

+ Từ đó \({{V}_{S.MNC}}={{k}^{3}}{{V}_{S.{A}'{B}'{C}'}}\Rightarrow {{V}_{1}}={{V}_{MNC.{A}'{B}'{C}'}}=\left( 1-{{k}^{3}} \right){{V}_{S.{A}'{B}'{C}'}}\)

+ Mặt khác \(\frac{{{V}_{ABC.{A}'{B}'{C}'}}}{{{V}_{S.{A}'{B}'{C}'}}}=\frac{3C{C}'}{S{C}'}=\frac{3\left( S{C}'-SC \right)}{S{C}'}=3\left( 1-k \right)\Rightarrow {{V}_{S.{A}'{B}'{C}'}}=\frac{{{V}_{ABC.{A}'{B}'{C}'}}}{3\left( 1-k \right)}\)

Suy ra \({{V}_{1}}=\left( 1-{{k}^{3}} \right)\frac{{{V}_{ABC.{A}'{B}'{C}'}}}{3\left( 1-k \right)}=\frac{\left( {{k}^{2}}+k+1 \right).{{V}_{ABC.{A}'{B}'{C}'}}}{3}\)

+ Vì \(\frac{{{V}_{1}}}{{{V}_{2}}}=2\) nên \({{V}_{1}}=\frac{2}{3}{{V}_{ABC.{A}'{B}'{C}'}}\Rightarrow \frac{{{k}^{2}}+k+1}{3}=\frac{2}{3}\Leftrightarrow {{k}^{2}}+k-1=0\Rightarrow k=\frac{-1+\sqrt{5}}{2}(k>0)\)

Vậy \(k=\frac{-1+\sqrt{5}}{2}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của d là

Xem lời giải » 3 năm trước 79
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\). Khoảng cách từ điểm \(A\left( {1; - 2;1} \right)\) đến mặt phẳng (P) bằng

Xem lời giải » 3 năm trước 76
Câu 3: Trắc nghiệm

Cho không gian Oxyz, cho điểm A(0;1;2) và hai đường thẳng \({d_1}:\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - 2t\\ z = 2 + t \end{array} \right.\), \({d_2}:\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 1}}{{ - 1}}\). Viết phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua A và song song với hai đường thẳng \({d_1},{d_2}\).

Xem lời giải » 3 năm trước 73
Câu 4: Trắc nghiệm

Tìm các giá trị của tham số m để hàm số \(y = \frac{1}{2}\ln \left( {{x^2} + 4} \right) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Xem lời giải » 3 năm trước 72
Câu 5: Trắc nghiệm

Cho các số thực a, b, c thỏa mãn \({a^2} + {b^2} + {c^2} - 2a - 4b = 4\). Tính P = a + 2b + 3c khi biểu thức \(\left| {2a + b - 2c + 7} \right|\) đạt giá trị lớn nhất.

Xem lời giải » 3 năm trước 71
Câu 6: Trắc nghiệm

Trong không gian Oxyz cho điểm M(1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) thỏa mãn OA = 2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S = 2a + b + 3c.

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Cho a, b, x là các số thực dương thỏa mãn \({\log _5}x = 2{\log _{\sqrt 5 }}a + 3{\log _{\frac{1}{5}}}b\). Mệnh đề nào là đúng?

Xem lời giải » 3 năm trước 65
Câu 8: Trắc nghiệm

Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây

Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có 6 nghiệm phân biệt

Xem lời giải » 3 năm trước 65
Câu 9: Trắc nghiệm

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 2\) và \({u_2} = 8\). Công sai của cấp số cộng bằng

Xem lời giải » 3 năm trước 64
Câu 10: Trắc nghiệm

Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình chữ nhật \(AB=a,AD=a\sqrt{2},SA\bot \left( ABCD \right)\) và SA=a (tham khảo hình vẽ). Khoảng cách từ A đến mặt phẳng \(\left( SBD \right)\) bằng:

Xem lời giải » 3 năm trước 64
Câu 11: Trắc nghiệm

Nghiệm của phương trình 2x-3 = \(\frac12\) là

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Trong không gian Oxyz, mặt cầu có tâm I(2;-1;1) và tiếp xúc mặt phẳng (Oyz) có phương trình là:

Xem lời giải » 3 năm trước 62
Câu 14: Trắc nghiệm

Cho hàm số bậc bốn y = f(x) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right) + 1 = 0\) là

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^2} + x\) và \(F\left( 1 \right) = 1\). Giá trị của \(F\left( { - 1} \right)\) bằng

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »