Với \(a\) là số thực khác 0 tùy ý, \({\log _4}{a^2}\) bằng:
lượt xem
lượt xem
Biết đường thẳng \(y = x - 2\) cắt đồ thị hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) tại hai điểm phân biệt\(A,B\) có hoành độ lần lượt\({x_A},{x_B}\). Khi đó giá trị \({x_A} + {x_B}\) bằng:
lượt xem
Tìm họ nguyên hàm của hàm số\(f(x) = \dfrac{{{x^2} - x + 1}}{{x - 1}}.\)
lượt xem
Trong không gian Oxyz . Biết mặt cầu (S) nhận hai điểm A(4;2;0), B(-2;-4;3) làm hai đầu đường kính. Tính tâm I bán kính R của (S)
lượt xem
lượt xem
lượt xem
Nghiệm của phương trình \(\sin x = 1\) là:
lượt xem
Họ nguyên hàm của hàm số \(y = x\sin x\) là
lượt xem
Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 3}}{4} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z + 2}}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của d?
lượt xem
Trong một lô hàng có 12 sản phẩm khác nhau, trong đó có đúng 2 phế phẩm. Lấy ngẫu nhiên 6 sản phẩm từ lô hàng đó. Hãy tính xác suất để trong 6 sản phẩm được lấy ra có không quá một phế phẩm?
lượt xem
lượt xem
Nghiệm của phương trình \({3^{x - 1}} = 9\) là
lượt xem
Trong không gian Oxyz, cho hai điểm \(A\left( {1;1;2} \right),B\left( {2;0;1} \right)\). Mặt phẳng đi qua A và vuông góc với đường thẳng AB có phương trình là:
lượt xem
lượt xem
Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) thỏa mãn \(x < y\) và \({4^x} + {4^y} = 32y - 32x + 48\).
lượt xem
Có bao nhiêu giá trị nguyên dương của \(m\) không vượt quá 2021 để phương trình \({4^{x - 1}} - m{.2^{x - 2}} + 1 = 0\) có nghiệm?
lượt xem
lượt xem
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\) bằng:
lượt xem
Cho khối lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a và mặt phăng (DBC’) hợp với mặt đáy (ABCD) một góc \({60^0}\). Tính theo a thể tích của khối lăng trụ ABCD.A’B’C’D’.
lượt xem
Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox.
lượt xem
Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2} + 2x\) là:
lượt xem
Diện tích hình phẳng giới hạn bơi đường thẳng \(y = x + 3\) và parabol \(y = 2{x^2} - x - 1\) bằng:
lượt xem
Tính thể tích \(V\) của khối nón có độ dài đường sinh \(l = 5a\) và bán kính của đường tròn đáy là \(r = 3a\)
lượt xem
Cho ba điểm \(A\left( {2;1; - 1} \right),\)\(B\left( { - 1;0;4} \right),\)\(C\left( {0; - 2; - 1} \right)\). Mặt phẳng đi qua \(A\) và vuông góc với BC có phương trình là
lượt xem
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x - 2}}\), biết tiếp tuyến có hệ số góc \(k = {\rm{\;}} - 3\).
lượt xem
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, \(AB = a;\,\,AD = a\sqrt 3 \). Thể tích khối chóp S.ABCD bằng
lượt xem
Cho hàm số \(y = f\left( x \right).\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới. Hàm số \(g\left( x \right) = f\left( {2 + {e^x}} \right)\)nghịch biến trên khoảng nào trong các khoảng sau đây?
lượt xem
Hãy tìm số nghiệm \(x\) thuộc \(\left[ {0;100} \right]\) của phương trình sau: \({2^{\cos \pi x - 1}} + \dfrac{1}{2} = \cos \pi x + {\log _4}\left( {3\cos \pi x - 1} \right)\)
lượt xem
Cho \(\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {x + 1} {\rm{\;}} + \sqrt x }} = \dfrac{2}{3}\left( {\sqrt a {\rm{\;}} - b} \right)} \) với a,b là các số nguyên dương. Giá trị của biểu thức \(T = a + b\) là:
lượt xem
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số \(y = \dfrac{2}{{ - x + 3}}\).
lượt xem
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình bên dưới.
Trong các số \(a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c,{\mkern 1mu} {\mkern 1mu} d\) có bao nhiêu số dương?
lượt xem
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( {1 - f\left( x \right)} \right) = 2\) là:
lượt xem
lượt xem
lượt xem
Cho bất phương trình \({\log _{\dfrac{1}{3}}}\left( {{x^2} - 2x + 6} \right) \le {\rm{\;}} - 2\). Mệnh đề nào sau đây là đúng?
lượt xem
lượt xem
Tìm giá trị cực đại của hàm số \(y = {\rm{\;}} - {x^3} + 3{x^2} + 1\)
lượt xem
Biết rằng \(\int\limits_1^2 {\dfrac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \) với \(a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\) là các số hữu tỉ. Tính \(2a + 3b - 4c.\)
lượt xem
Cho hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Với giá trị nào của \(m\) để hàm số có 2 điểm cực trị A,B sao cho \(AB = \sqrt {20} .\)
lượt xem
Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AC = 2a,{\mkern 1mu} {\mkern 1mu} BD = 4a\). Tính theo \(a\) khoảng cách giữa hai đường thẳng AD và SC.
lượt xem
Tập nghiệm của bất phương trình \({\log _{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0\) có dạng \(\left( {a;b} \right)\). Tính \(T = 3a - 2b.\)
lượt xem
Cho tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD. Diện tích xung quanh của \(\left( T \right)\) bằng:
lượt xem
Tìm nguyên hàm của hàm số \(f(x) = 3{x^2} + 8\sin x\).
lượt xem
lượt xem
Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình \({{\rm{x}}^2} - x + 2\left( {1 - x} \right)\sqrt {x - m} - m = 0\) có 3 nghiệm phân biệt là \(\left[ {a;b} \right)\). Tính \(a + b\).
lượt xem
Cho hình hộp chữ nhật \(ABC{\rm{D}}.A'B'C'D'\) có đáy \(ABC{\rm{D}}\) là hình vuông cạnh a và \({\rm{AA' = 2a}}\). Thể tích khối tứ diện \(B{\rm{D}}B'C\).
lượt xem
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {e^{ - x}} + \cos {\rm{x}}\). Tìm khẳng định đúng.
lượt xem
Tìm tập xác định D của hàm số \(y = {\left( {x + 1} \right)^\pi }\).
lượt xem