Một sinh viên A mua máy tính xách tay theo hình thức trả góp với giá tiền 20 triệu đồng, mức lãi suất 1,2%/tháng trong năm đầu tiên, mỗi tháng anh A phải trả 80028 tháng. 28 tháng. ngàn đồng, cả gốc và lãi. Sau một năm lãi suất tăng lên là 1,5%/tháng và anh A phải trả 1 triệu đồng cả gốc và lãi mỗi tháng (trừ tháng cuối). Hỏi sau tối đa bao nhiêu tháng anh A trả hết nợ (tháng cuối trả không quá 500 ngàn đồng)
A. 28 tháng.
B. 26 tháng.
C. 25 tháng.
D. 27 tháng.
Lời giải của giáo viên
ToanVN.com
Số tiền sinh viên A còn nợ sau 1 năm đầu là: \({M_{12}} = 20000.1 + 1,2{\% ^{12}} - 800.\frac{{1 + 1,2{\% ^{12}} - 1}}{{1,2\% }} \approx 12818\) (nghìn đồng)
Gọi n là số tháng (tính từ năm thứ hai) mà sinh viên A trả được hết nợ, ta có:
\(\begin{array}{l}
{N_n} = 12818.1 + 1,5{\% ^n} - 1000.\frac{{1 + 1,5{\% ^n} - 1}}{{1,5\% }} = 0\\
\Leftrightarrow 12818.1,5\% + 1,5{\% ^n} - 1000.1 + 1,5{\% ^n} + 1000 = 0\\
\Leftrightarrow - 807,73.1 + 1,5{\% ^n} + 1000 = 0\\
\Leftrightarrow n \approx {\log _{1,015}}\frac{{1000}}{{807,73}} \approx 14,3.
\end{array}\)
Vậy, số tháng để sinh viên A trả hết nợ là: 12 + 15 = 27 (tháng)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \left| {{x^3} - mx + 1} \right|.\) Gọi S là tập tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left[ {1; + \infty } \right).\) Tìm số phân tử của S.
Cho hàm số \(y = \frac{x}{{1 - x}}\left( C \right).\) Tìm m để đường thẳng \(d:y = mx - m - 1\) cắt (C) tại 2 điểm phân biệt M, N sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất với A(-1;1).
Cắt khối nón bởi một mặt phẳng qua trục tạo thành một tam giác đều có cạnh bằng a. Thể tích của khối nón là:
Một hình hộp đứng có đáy là hình thoi (không phải hình vuông) có bao nhiêu mặt phẳng đối xứng
Số tiếp tuyến với đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) sao cho tiếp tuyến song song với đường thẳng y = 9x - 29 là:
Thể tích khối cầu có bán kính bằng \(\frac{a}{2}\) là:
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức \(P = \frac{1}{3}{x^3} + {x^2} + {y^2} - x + 1\)
Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất Vmin của khối tứ diện SAMN.
Cho hàm số y = f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.
.png)
Cho các số thực dương a, b thỏa mãn \({\log _{16}}a = {\log _{25}}\frac{{2a - b}}{3}.\) Tính tỉ số \(T = \frac{a}{b}.\)
Cho tứ diện ABCD. Gọi I là trung điểm của BC, M là điểm trên cạnh DC. Một mp \(\left( \alpha \right)\) qua M, song song BC và AI. Gọi P, Q lần lượt là giao điểm của \(\left( \alpha \right)\) với BD và AD. Xét các mệnh đề sau:
(1) MP // BC (2) MQ // AC (3) PQ // AI (4) (MPQ) // (ABC)
Số mệnh đề đúng là:
Kết luận nào là đúng về GTLN và GTNN của hàm số \(y = \sqrt {x - {x^2}} \) ?
Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB = a, \(\angle BAD = {60^0},SO \bot (ABCD)\) và mặt phẳng (SCD) tạo với đáy một góc 600 . Tính thế tích khối chóp S.ABCD.


