Câu hỏi Đáp án 3 năm trước 74

Hàm số nào sau đây đồng biến trên R

A. y = tan x

B. \(y = \frac{x}{{x + 1}}\)

C. \(y = {\left( {{x^2} - 1} \right)^2} - 3x + 2\)

D. \(y = \frac{x}{{\sqrt {x{}^2 + 1} }}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

y = tanx loại, do \(D = R\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in Z} \right\}\) 

\(y = \frac{x}{{x + 1}}:\) loại, do \(D = R\backslash \{  - 1\} \) 

\(y = {\left( {{x^2} - 1} \right)^2} - 3x + 2:\) loại, do \(y' = 2.2x\left( {x{}^2 - 1} \right) - 3 = 4{x^3} - 4x - 3\)  có khoảng mang dấu dương, có khoảng mang dấu âm

\(y = \frac{x}{{\sqrt {{x^2} + 1} }}:\) thỏa mãn, do: \(y' = \frac{{\sqrt {{x^2} + 1}  - \frac{x}{{\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \frac{1}{{\sqrt {{x^2} + 1} \left( {{x^2} + 1} \right)}} > 0,\forall x \in R\) 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = \left| {{x^3} - mx + 1} \right|.\)  Gọi S là tập tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left[ {1; + \infty } \right).\) Tìm số phân tử của S.

Xem lời giải » 3 năm trước 195
Câu 2: Trắc nghiệm

Cho hàm số \(y = \frac{x}{{1 - x}}\left( C \right).\) Tìm m để đường thẳng \(d:y = mx - m - 1\) cắt (C) tại 2 điểm phân biệt M, N sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất với A(-1;1).

Xem lời giải » 3 năm trước 82
Câu 3: Trắc nghiệm

Cắt khối nón bởi một mặt phẳng qua trục tạo thành một tam giác đều có cạnh bằng a. Thể tích của khối nón là:

Xem lời giải » 3 năm trước 77
Câu 4: Trắc nghiệm

Một hình hộp đứng có đáy là hình thoi (không phải hình vuông) có bao nhiêu mặt phẳng đối xứng

Xem lời giải » 3 năm trước 76
Câu 5: Trắc nghiệm

Số tiếp tuyến với đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) sao cho tiếp tuyến song song với đường thẳng y = 9x - 29 là:

Xem lời giải » 3 năm trước 75
Câu 6: Trắc nghiệm

Thể tích khối cầu có bán kính bằng \(\frac{a}{2}\) là:

Xem lời giải » 3 năm trước 72
Câu 7: Trắc nghiệm

Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức \(P = \frac{1}{3}{x^3} + {x^2} + {y^2} - x + 1\)

Xem lời giải » 3 năm trước 71
Câu 8: Trắc nghiệm

Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất Vmin của khối tứ diện SAMN.

Xem lời giải » 3 năm trước 69
Câu 9: Trắc nghiệm

Kết luận nào là đúng về GTLN và GTNN của hàm số \(y = \sqrt {x - {x^2}} \) ?

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

 Cho hàm số y = f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Cho các số thực dương a, b thỏa mãn \({\log _{16}}a = {\log _{25}}\frac{{2a - b}}{3}.\) Tính tỉ số \(T = \frac{a}{b}.\) 

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Cho tứ diện ABCD. Gọi I là trung điểm của BC, M là điểm trên cạnh DC. Một mp \(\left( \alpha  \right)\) qua M, song song BC và AI. Gọi P, Q lần lượt là giao điểm của \(\left( \alpha  \right)\) với BD và AD. Xét các mệnh đề sau: 

(1) MP // BC               (2) MQ // AC                          (3) PQ // AI                 (4) (MPQ) // (ABC)

Số mệnh đề đúng là:

Xem lời giải » 3 năm trước 65
Câu 13: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB = a, \(\angle BAD = {60^0},SO \bot (ABCD)\) và  mặt phẳng (SCD) tạo với đáy một góc 600 . Tính thế tích khối chóp S.ABCD.  

Xem lời giải » 3 năm trước 64
Câu 14: Trắc nghiệm

Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:

Xem lời giải » 3 năm trước 64
Câu 15: Trắc nghiệm

Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:

Xem lời giải » 3 năm trước 64

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »