Lời giải của giáo viên
ToanVN.com
Đặt \({\log _{16}}a = {\log _{20}}b = {\log _{25}}\frac{{2a - b}}{3} = t \Rightarrow \left\{ \begin{array}{l}
a = {16^t}\\
b = {20^t}\\
2a - b = {3.25^t}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{2.16^t} - {20^t} = {3.25^t}(1)\\
\frac{a}{b} = {\left( {\frac{4}{5}} \right)^t}
\end{array} \right.\)
\(\left( 1 \right) \Leftrightarrow 2.{\left( {\frac{{16}}{{25}}} \right)^t} - {\left( {\frac{4}{5}} \right)^t} - 3 = 0 \Leftrightarrow 2.{\left( {\frac{4}{5}} \right)^{2t}} - {\left( {\frac{4}{5}} \right)^t} - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}
{\left( {\frac{4}{5}} \right)^t} = - 1 < 0\\
{\left( {\frac{4}{5}} \right)^t} = \frac{3}{2}
\end{array} \right. \Leftrightarrow {\left( {\frac{4}{5}} \right)^t} = \frac{3}{2}\)
\( \Rightarrow T = \frac{a}{b} = \frac{3}{2} \Rightarrow 1 < T < 2.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \left| {{x^3} - mx + 1} \right|.\) Gọi S là tập tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left[ {1; + \infty } \right).\) Tìm số phân tử của S.
Cho hàm số \(y = \frac{x}{{1 - x}}\left( C \right).\) Tìm m để đường thẳng \(d:y = mx - m - 1\) cắt (C) tại 2 điểm phân biệt M, N sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất với A(-1;1).
Cắt khối nón bởi một mặt phẳng qua trục tạo thành một tam giác đều có cạnh bằng a. Thể tích của khối nón là:
Một hình hộp đứng có đáy là hình thoi (không phải hình vuông) có bao nhiêu mặt phẳng đối xứng
Số tiếp tuyến với đồ thị hàm số \(y = {x^3} - 3{x^2} - 2\) sao cho tiếp tuyến song song với đường thẳng y = 9x - 29 là:
Thể tích khối cầu có bán kính bằng \(\frac{a}{2}\) là:
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức \(P = \frac{1}{3}{x^3} + {x^2} + {y^2} - x + 1\)
Cho tứ diện đều S.ABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất Vmin của khối tứ diện SAMN.
Kết luận nào là đúng về GTLN và GTNN của hàm số \(y = \sqrt {x - {x^2}} \) ?
Cho hàm số y = f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.
.png)
Cho tứ diện ABCD. Gọi I là trung điểm của BC, M là điểm trên cạnh DC. Một mp \(\left( \alpha \right)\) qua M, song song BC và AI. Gọi P, Q lần lượt là giao điểm của \(\left( \alpha \right)\) với BD và AD. Xét các mệnh đề sau:
(1) MP // BC (2) MQ // AC (3) PQ // AI (4) (MPQ) // (ABC)
Số mệnh đề đúng là:
Cho đa giác đều n đỉnh, \(n \in R\) và n > 3. Tìm n biết rằng đa giác đã cho có 135 đường chéo
Số nghiệm của phương trình \({2^{2{x^2} - 7x + 5}} = 1\) là:
Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:


