Một cái phễu có dạng hình nón, chiều cao của phễu là 20 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng 10 cm. Nếu bịt kín miệng phễu và lật ngược phễu lên thì chiều cao của cột nước trong phễu gần bằng nhất với giá trị nào sau đây.
.png)
A. 1,07 cm.
B. 10 cm
C. 9,35 cm
D. 0,87 cm
Lời giải của giáo viên
ToanVN.com
Thể tích cái phễu là \(V = \frac{1}{3}\pi {r^2}h.\)
Thể tích nước đổ vào là \({V_1} = \frac{1}{3}\pi r_1^2{h_1}.\)
Sau khi bịt miệng phễu và lật ngược phễu lên thì thể tích phần phễu không chứa nước là
\({V_2} = V - {V_1} = \frac{7}{8}V.\)
\( \Rightarrow \frac{{{V_2}}}{V} = \frac{7}{8} \Rightarrow \frac{{r_2^2.{h_2}}}{{{r^2}.h}} = \frac{7}{8} \Rightarrow {\left( {\frac{{{h_2}}}{{{h_1}}}} \right)^3} = \frac{7}{8} \Rightarrow \frac{{{h_2}}}{{{h_1}}} = \frac{{\sqrt[3]{7}}}{2} \Rightarrow {h_2} = \frac{{\sqrt[3]{7}}}{2}.20 = 10\sqrt[3]{7}.\)
Suy ra chiều cao cột nước trong phễu là \({h_3} = h - {h_2} = 20 - 10\sqrt[3]{7} \approx 0,8706\left( {cm} \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lập phương ABCD.A'B'C'D' có tất cả các cạnh bằng 1. Gọi M là trung điểm của BB'.Tính thể tích khối A'MCD
.png)
Trong các hàm số sau hàm số nào nghịch biến trên R?
Tìm tất cả các giá trị của m để hàm số \(y = \frac{{mx + 16}}{{x + m}}\) đồng biến trên \(\left( {0; + \infty } \right)\) ?
Cho hình chóp đều S.ABC có \(AB = a,\widehat {ASB} = {30^0}.\) Lấy các điểm B', C' lần lượt thuộc các cạnh SB, SC sao cho chu vi tam giác AB'C' nhỏ nhất. Tính chu vi đó.
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y=f(x)\) có đúng ba điểm cực trị là 0; 1; 2 và có đạo hàm liên tục trên R. Khi đó hàm số \(y = f\left( {4x - 4{x^2}} \right)\) có bao nhiêu điểm cực trị?
Gọi d là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^4} - 3{x^2} + 2.\) Mệnh đề nào dưới đây đúng?
Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi E, F lần lượt là trung điểm các cạnh SB, SC. Biết mặt phẳng (AEF) vuông góc với mặt phẳng (SBC).
.png)
Thể tích của khối chóp S.ABC.
Cho M là trung điểm của đoạn AB. Khẳng định nào sau đây đúng?
Cho m, n là các số nguyên dương khác 1. Gọi P là tích các nghiệm của phương trình \(2018\left( {{{\log }_m}x} \right)\left( {{{\log }_n}x} \right) = 2017{\log _m}x + 2018{\log _n}x + 2019.\) P nguyên và đạt giá trị nhỏ nhất khi:
Tìm số điểm cực trị của đồ thị hàm số \(y = \frac{{x - 2}}{{x + 1}}\) ?
Gọi S là tập nghiệm của phương trình \({\log _{\sqrt 2 }}{\left( {x - 1} \right)^3} - {\log _2}{\left( {x - 3} \right)^2} = 2{\log _2}\left( {x - 1} \right)\) trên R. Tìm số phần tử của S.
Một nhóm học sinh gồm 5 bạn nam, và 3 bạn nữ cùng đi xem phim, có bao nhiêu cách xếp 8 bạn vào 8 ghế hàng ngang sao cho 3 bạn nữ ngồi cạnh nhau?
Tìm m để hàm số \(y = \left\{ \begin{array}{l}
\frac{{2\sqrt[3]{x} - x - 1}}{{x - 1}}{\rm{ khi x}} \ne {\rm{1}}\\
{\rm{mx + 1 khi x = 1}}
\end{array} \right.\) liên tục trên R
Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} \right|\) trên đoạn [0;2] không vượt quá 30. Tính tổng tất cả các phần tử của S.


